diff --git a/work/document_AI_analysis.md b/work/document_AI_analysis.md new file mode 100644 index 0000000..6213333 --- /dev/null +++ b/work/document_AI_analysis.md @@ -0,0 +1,222 @@ +Here’s a **no-nonsense one-pager** you can use to pitch law firms, focusing on **immediate time savings** and **risk reduction** (no tech jargon): + +--- + +# **🚀 Auto-Redline: Cut Contract Review Time by 80%** +### **AI-Powered Redlining for Mid-Sized Law Firms** + +**What It Does**: +- **Instantly redlines** opponent drafts (Word/PDF) against your firm’s playbook. +- **Flags hidden risks** (e.g., auto-renewals, unusual liability caps). +- **Suggests pre-approved clauses** with one-click replacement. + +**How It Works**: +1. **Upload** a contract (drag & drop into Word/Outlook). +2. **AI highlights** problematic terms + suggests fixes. +3. **You review** and click "Accept" or "Revise." + +--- + +### **Why Firms Love It** +✅ **Saves 15+ hours/week** per lawyer (no more manual redlining). +✅ **Catches sneaky terms** even partners miss (e.g., "This indemnification clause is 3x broader than market"). +✅ **Works offline**—no data leaves your servers. + +--- + +### **Use Cases** +- **NDAs**: Review in **5 minutes** vs. 2 hours. +- **Leases**: Auto-flag **unusual covenants**. +- **Employment Agreements**: Enforce **firm-approved templates**. + +--- + +### **Competitive Edge** +| Feature | Legacy Tools | Auto-Redline | +|---------|-------------|--------------| +| **Handles scanned PDFs/tables** | ❌ | ✅ | +| **Learns your firm’s preferences** | ❌ | ✅ | +| **One-click clause replacement** | ❌ | ✅ | + +--- + +### **Pricing** +- **$499/month** (unlimited contracts, per user). +- **7-day free trial** (no credit card needed). + +--- + +### **Get Started** +📞 **Call**: [Your Number] +🌐 **Demo**: [Your Website] + +> *"We cut NDA review time from 2 hours to 10 minutes. Game-changer!"* +> — [Law Firm Name], [Title] + +--- + +### **FAQ** +**Q: Is this secure?** +A: Yes—runs 100% on your computers. No cloud required. + +**Q: How long to set up?** +A: 5 minutes. We pre-load your clause library. + +**Q: What if we hate it?** +A: Cancel anytime. No contracts. + +--- + +**Design Notes**: +- Use **bold, clean headings** (lawyers skim). +- Include a **testimonial** (social proof). +- **Avoid tech terms** ("AI" → "auto-redline"). + +Want this as a **PDF template**? Happy to customize it further! This pitch works because it **solves a daily pain point**—not because the tech is "cool." + +Here's a **crystal-clear tech stack breakdown** with deployment milestones, designed for **scalability** and **mid-firm adoption**. We'll focus on **minimum viable components** that deliver maximum value fast: + +--- + +### **⚙️ Core Tech Stack** +#### **1. Document Ingestion & Parsing Layer** +| Component | Purpose | Key Features | Alternatives | +|-----------|---------|--------------|--------------| +| **Docling** | Parse complex contracts (PDFs, scans, tables) | - Layout-aware extraction
- OCR for scans
- Table/formula detection | Adobe PDF Extract API (costly) | +| **Apache Tika** (fallback) | Extract text from uncommon formats | - Supports 1,000+ file types | - | + +**Deployment Goal**: +- Ingest 95% of contract types (PDF, DOCX, scans) with **>90% accuracy**. + +--- + +#### **2. Data Storage & Query Layer** +| Component | Purpose | Key Features | Alternatives | +|-----------|---------|--------------|--------------| +| **DuckDB** | OLAP analytics on contracts | - SQL queries on JSON/Parquet
- Client-side processing | Snowflake (overkill) | +| **Parquet Files** | Store processed contracts | - Columnar efficiency
- Versioning via Delta Lake | MongoDB (less performant) | + +**Deployment Goal**: +- Execute **10,000+ clause searches/sec** on a laptop. + +--- + +#### **3. AI/ML Layer** +| Component | Purpose | Key Features | Alternatives | +|-----------|---------|--------------|--------------| +| **Haystack** | Redlining & Q&A | - Pre-built RAG pipelines
- Local LLM support | LangChain (more dev-heavy) | +| **all-MiniLM-L6-v2** | Embeddings | - Lightweight
- 384-dim vectors | OpenAI embeddings (cloud) | +| **Phi-3-small** (optional) | Local LLM | - 4-bit quantized
- Runs on CPU | LLaMA-3 (larger) | + +**Deployment Goal**: +- **Redline a 50-page contract in <30 sec** on a MacBook Pro. + +--- + +#### **4. Integration Layer** +| Component | Purpose | Key Features | Alternatives | +|-----------|---------|--------------|--------------| +| **FastAPI** | Backend API | - Python-native
- Swagger docs | Flask (less async) | +| **Microsoft Word Add-in** | User interface | - Office JS API
- Track changes integration | None (critical for adoption) | + +**Deployment Goal**: +- **One-click redline** from Word’s ribbon toolbar. + +--- + +### **🚀 Deployment Phases** +#### **Phase 1: Local MVP (4 Weeks)** +- **Target**: Single-lawyer usability +- **Deliverables**: + 1. Docling → DuckDB pipeline ingesting **PDFs + DOCX**. + 2. Haystack RAG answering **"Show indemnification clauses"**. + 3. **Word Add-in MVP** (highlight clauses only). + +#### **Phase 2: Firm-Wide (8 Weeks)** +- **Target**: 5-user pilot +- **Deliverables**: + 1. **Playbook integration** (pre-approved clauses). + 2. **Batch processing** (upload 100+ contracts). + 3. **Basic analytics dashboard** (DuckDB + Plotly). + +#### **Phase 3: Enterprise (12+ Weeks)** +- **Target**: 50+ users +- **Deliverables**: + 1. **Self-learning** (auto-updates playbooks). + 2. **Opponent profiling** ("Firm X always hides arbitration"). + 3. **SOC-2 compliance**. + +--- + +### **🔧 Developer Cheatsheet** +#### **1. Docling → DuckDB Flow** +```python +# Parse contract +from docling import DoclingDocument +doc = DoclingDocument("contract.pdf") + +# Convert to DuckDB-ready JSON +import json +with open("contract.json", "w") as f: + json.dump(doc.to_dict(), f) + +# Query in DuckDB +import duckdb +duckdb.sql(""" + SELECT + text, + meta->>'parties' AS parties + FROM read_json('contract.json') + WHERE text LIKE '%indemnification%' +""") +``` + +#### **2. Haystack Redlining** +```python +from haystack import Pipeline +from haystack.nodes import EmbeddingRetriever, FARMReader + +# Load pre-built index +retriever = EmbeddingRetriever(embedding_model="all-MiniLM-L6-v2") +reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2") + +# Build pipeline +pipe = Pipeline() +pipe.add_node(component=retriever, name="Retriever", inputs=["Query"]) +pipe.add_node(component=reader, name="Reader", inputs=["Retriever"]) + +# Run +results = pipe.run(query="Find all termination clauses") +``` + +#### **3. Word Add-in (Simplified)** +```javascript +// Office JS API (Word Add-in) +function highlightClauses() { + Word.run(async (context) => { + const clauses = await getAIResults(); // Call FastAPI + clauses.forEach(clause => { + context.document.getSearch(clause.text).highlight("yellow"); + }); + await context.sync(); + }); +} +``` + +--- + +### **📊 Key Metrics to Track** +| Metric | Tool | Target | +|--------|------|--------| +| **Parse Accuracy** | Docling logs | >90% clauses correct | +| **Redline Speed** | Haystack timers | <30 sec/contract | +| **User Adoption** | Word Add-in telemetry | 80% weekly active users | + +--- + +### **💡 Pro Tips** +1. **Start with NDAs** (simple, high-volume). +2. **Use DuckDB’s JSON streaming** for >1GB contracts. +3. **Cache embeddings** to speed up repeat queries. + +Need **detailed deployment checklists** or **sample contracts** to test with? Happy to share! This stack is battle-ready for mid-sized firms. \ No newline at end of file