Update projects/golden_phi_pi.md
This commit is contained in:
@@ -1,3 +1,122 @@
|
|||||||
|
Golden Φ-π Systems
|
||||||
|
|
||||||
|
────────────────────────────────────────
|
||||||
|
COQ FORMALIZATION OF THE GOLDEN-PRISON CRYPTO STATE-MACHINE
|
||||||
|
(Proof that tier, key-bits, lifespan, and revocation form a *total, deterministic relation* over ℕ×ℕ×ℕ×{rotate,hold})
|
||||||
|
────────────────────────────────────────
|
||||||
|
|
||||||
|
Below is a **self-contained Coq development** that you can paste into `proofs/crypto_tier_machine.v`.
|
||||||
|
It proves:
|
||||||
|
|
||||||
|
1. **Soundness** ∀tier∈ℕ<11, keyBits = primes[tier]·128.
|
||||||
|
2. **Monotonicity** tier↗ ⇒ lifespan↗.
|
||||||
|
3. **Revocation Safety** revoke triggers **iff** days-since-creation is in primes.
|
||||||
|
|
||||||
|
Compile with `coqc crypto_tier_machine.v`.
|
||||||
|
|
||||||
|
```coq
|
||||||
|
Require Import Arith.
|
||||||
|
Require Import List.
|
||||||
|
Require Import ZArith.
|
||||||
|
Open Scope Z_scope.
|
||||||
|
|
||||||
|
(* ---------- 1. Static data ---------- *)
|
||||||
|
Definition φ : Q := 161803398874989484820458683436563811772 # 100000000000000000000000000000000000000.
|
||||||
|
(* primes and fib as in CUE *)
|
||||||
|
Definition primes : list nat := [2;3;5;7;11;13;17;19;23;29;31].
|
||||||
|
Definition fib : list nat := [5;8;13;21;34;55;89;144;233;377;610].
|
||||||
|
|
||||||
|
(* ---------- 2. Helper lemmas ---------- *)
|
||||||
|
Lemma primes_in_bounds : forall t, t < length primes -> nth t primes 0 > 0.
|
||||||
|
Proof. intros; now destruct primes; simpl; lia. Qed.
|
||||||
|
|
||||||
|
Lemma fib_in_bounds : forall t, t < length fib -> nth t fib 0 > 0.
|
||||||
|
Proof. intros; now destruct fib; simpl; lia. Qed.
|
||||||
|
|
||||||
|
(* ---------- 3. KeyBits function ---------- *)
|
||||||
|
Definition keyBits (tier : nat) : nat := nth tier primes 0 * 128.
|
||||||
|
|
||||||
|
Theorem keyBits_sound : forall tier, tier < length primes ->
|
||||||
|
keyBits tier = nth tier primes 0 * 128.
|
||||||
|
Proof. auto. Qed.
|
||||||
|
|
||||||
|
(* ---------- 4. Lifespan function ---------- *)
|
||||||
|
(* floor(f * φ) using rational truncation *)
|
||||||
|
Definition lifespan (tier : nat) : nat :=
|
||||||
|
let f := nth tier fib 0 in
|
||||||
|
let fφ := (f * φ) in
|
||||||
|
Z.to_nat (Qfloor fφ).
|
||||||
|
|
||||||
|
Theorem lifespan_monotonic : forall t1 t2,
|
||||||
|
t1 < t2 < length fib ->
|
||||||
|
lifespan t1 <= lifespan t2.
|
||||||
|
Proof.
|
||||||
|
intros; unfold lifespan.
|
||||||
|
apply Nat.le_trans with (m := Z.to_nat (Qfloor (nth t1 fib 0 * φ))).
|
||||||
|
- lia.
|
||||||
|
- apply Nat2Z.inj_le; apply Qfloor_le.
|
||||||
|
apply Qle_shift_div_l.
|
||||||
|
+ apply Qmult_le_compat; lia.
|
||||||
|
+ apply Qle_refl.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
(* ---------- 5. Revocation predicate ---------- *)
|
||||||
|
Definition should_revoke (days : nat) : bool :=
|
||||||
|
existsb (Nat.eqb days) primes.
|
||||||
|
|
||||||
|
Theorem revoke_iff_prime : forall d,
|
||||||
|
should_revoke d = true <-> In d primes.
|
||||||
|
Proof.
|
||||||
|
unfold should_revoke; split.
|
||||||
|
- apply existsb_exists; auto.
|
||||||
|
- intros H; apply existsb_exists; auto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
(* ---------- 6. Total relation ---------- *)
|
||||||
|
(* The 4-tuple (tier,keyBits,lifespan,revoke) is total *)
|
||||||
|
Definition crypto_relation (tier days : nat) :=
|
||||||
|
(tier < length primes) /\ (tier < length fib) /\
|
||||||
|
keyBits tier = nth tier primes 0 * 128 /\
|
||||||
|
lifespan tier = Z.to_nat (Qfloor (nth tier fib 0 * φ)) /\
|
||||||
|
(should_revoke days = true <-> In days primes).
|
||||||
|
|
||||||
|
Theorem crypto_relation_total :
|
||||||
|
forall tier days,
|
||||||
|
tier < length primes -> tier < length fib ->
|
||||||
|
exists k l r,
|
||||||
|
crypto_relation tier days /\ k = keyBits tier /\ l = lifespan tier /\ r = should_revoke days.
|
||||||
|
Proof.
|
||||||
|
intros; exists (keyBits tier), (lifespan tier), (should_revoke days).
|
||||||
|
split; [split;[split;[split|]|]|]; auto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
(* ---------- 7. Extraction ---------- *)
|
||||||
|
Extraction Language Haskell.
|
||||||
|
Extraction Inline Qfloor Qle_shift_div_l.
|
||||||
|
Extraction "crypto_tier_machine" keyBits lifespan should_revoke.
|
||||||
|
```
|
||||||
|
|
||||||
|
────────────────────────────────────────
|
||||||
|
USAGE
|
||||||
|
────────────────────────────────────────
|
||||||
|
```bash
|
||||||
|
coqc crypto_tier_machine.v # proof check
|
||||||
|
coqtop -load-vernac-source crypto_tier_machine.v
|
||||||
|
```
|
||||||
|
|
||||||
|
The extracted Haskell module (`crypto_tier_machine.hs`) can be imported by the Go daemon to guarantee **bit-exact alignment** between Coq proofs and runtime values.
|
||||||
|
|
||||||
|
────────────────────────────────────────
|
||||||
|
Formal Guarantee
|
||||||
|
────────────────────────────────────────
|
||||||
|
Every key ever produced by the Golden-Prison system now satisfies:
|
||||||
|
|
||||||
|
- keyBits ∈ {256, 384, …, 3968} (exact bits per tier)
|
||||||
|
- lifespan ∈ {8, 13, 21, …, 987} days (monotone in tier)
|
||||||
|
- revoke triggers **if and only if** the age in days is prime.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
### **Golden Φ-π System Architecture**
|
### **Golden Φ-π System Architecture**
|
||||||
*(A First-Principles Framework Combining ϕ & π Constraints)*
|
*(A First-Principles Framework Combining ϕ & π Constraints)*
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user