Update smma/government_contracts.md
This commit is contained in:
@@ -1,3 +1,181 @@
|
|||||||
|
### **Data-Centric Government Contracting: Deliverables-First Roadmap**
|
||||||
|
You’re right—let’s cut the fluff and focus on **concrete, data-driven deliverables** you can build *today* to monetize your skills. Here’s the **no-BS playbook**:
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### **1. Deliverable: Automated "Bid Matching" SQLite Database**
|
||||||
|
**What It Is**:
|
||||||
|
- A **DuckDB/SQLite database** that ingests SAM.gov/Grants.gov XML feeds and answers:
|
||||||
|
- *"Which active bids match my skills (e.g., IT, networking)?"*
|
||||||
|
- *"What’s the win probability based on historical awards?"*
|
||||||
|
|
||||||
|
**How to Build It**:
|
||||||
|
```python
|
||||||
|
# Pseudocode: Extract and analyze bids
|
||||||
|
import duckdb
|
||||||
|
conn = duckdb.connect("govcon.db")
|
||||||
|
|
||||||
|
# Load Grants.gov XML into DuckDB
|
||||||
|
conn.execute("""
|
||||||
|
CREATE TABLE grants AS
|
||||||
|
SELECT * FROM read_xml('GrantsDBExtract*.zip',
|
||||||
|
auto_detect=true,
|
||||||
|
ignore_errors=true)
|
||||||
|
""")
|
||||||
|
|
||||||
|
# Query: Find IT-related bids under $250K
|
||||||
|
it_bids = conn.execute("""
|
||||||
|
SELECT OpportunityID, Title, AwardCeiling
|
||||||
|
FROM grants
|
||||||
|
WHERE Description LIKE '%IT%'
|
||||||
|
AND AwardCeiling < 250000
|
||||||
|
""").df()
|
||||||
|
```
|
||||||
|
|
||||||
|
**Sell It As**:
|
||||||
|
- **"Done-for-you bid matching database"** ($500 one-time).
|
||||||
|
- **"Weekly updated SQLite feed"** ($100/month).
|
||||||
|
|
||||||
|
**Target Buyers**:
|
||||||
|
- Small IT contractors tired of manual SAM.gov searches.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### **2. Deliverable: LaTeX Proposal Templates with LLM Auto-Fill**
|
||||||
|
**What It Is**:
|
||||||
|
- A **LaTeX template** for SF-1449/SF-330 forms **auto-populated by GPT-4** using:
|
||||||
|
- Client’s past performance data (from their CSV/resumes).
|
||||||
|
- Solicitation requirements (from SAM.gov XML).
|
||||||
|
|
||||||
|
**How to Build It**:
|
||||||
|
```r
|
||||||
|
# R script to merge client data + RFP into LaTeX
|
||||||
|
library(tinytex)
|
||||||
|
library(openai)
|
||||||
|
|
||||||
|
# Step 1: Extract RFP requirements
|
||||||
|
rfp_text <- readLines("solicitation.xml")
|
||||||
|
requirements <- gpt4("Extract technical requirements from this RFP:", rfp_text)
|
||||||
|
|
||||||
|
# Step 2: Generate compliant LaTeX response
|
||||||
|
latex_output <- gpt4("Write a LaTeX section addressing:", requirements)
|
||||||
|
writeLines(latex_output, "proposal_section.tex")
|
||||||
|
tinytex::pdflatex("proposal_section.tex")
|
||||||
|
```
|
||||||
|
|
||||||
|
**Sell It As**:
|
||||||
|
- **"Turn your resume into a compliant proposal in 1 hour"** ($300/client).
|
||||||
|
- **"LaTeX template pack + AI integration"** ($200 one-time).
|
||||||
|
|
||||||
|
**Target Buyers**:
|
||||||
|
- Solo consultants bidding on SBIR/STTR grants.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### **3. Deliverable: Invoice Ninja + FAR Compliance Automation**
|
||||||
|
**What It Is**:
|
||||||
|
- A **pre-configured Invoice Ninja instance** with:
|
||||||
|
- FAR-compliant invoice templates (Net 30, CLINs, etc.).
|
||||||
|
- Auto-reminders for late payments.
|
||||||
|
|
||||||
|
**How to Build It**:
|
||||||
|
1. **Set up Invoice Ninja** (self-hosted or cloud).
|
||||||
|
2. **Add FAR clauses** to templates:
|
||||||
|
```markdown
|
||||||
|
### FAR 52.232-25: Prompt Payment
|
||||||
|
Payment due within 30 days of invoice receipt.
|
||||||
|
```
|
||||||
|
3. **Use R/Python** to auto-generate invoices from contract data:
|
||||||
|
```python
|
||||||
|
# Pseudocode: Auto-invoice from contract DB
|
||||||
|
import invoiceninja
|
||||||
|
invoiceninja.generate_invoice(
|
||||||
|
client_id="gov_agency_123",
|
||||||
|
amount=5000,
|
||||||
|
due_date="Net 30",
|
||||||
|
far_clauses=True
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
**Sell It As**:
|
||||||
|
- **"GovCon invoicing setup done in 2 hours"** ($250 flat fee).
|
||||||
|
- **"Recurring invoice automation"** ($50/month).
|
||||||
|
|
||||||
|
**Target Buyers**:
|
||||||
|
- New GovCon winners drowning in paperwork.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### **4. Deliverable: DuckDB-Powered "Bid/No-Bid" Dashboard**
|
||||||
|
**What It Is**:
|
||||||
|
- A **local Shiny app** or Streamlit dashboard that:
|
||||||
|
- Ingests SAM.gov data.
|
||||||
|
- Flags high-probability bids (low competition, right NAICS).
|
||||||
|
|
||||||
|
**How to Build It**:
|
||||||
|
```r
|
||||||
|
# R + Shiny dashboard
|
||||||
|
library(shiny)
|
||||||
|
library(duckdb)
|
||||||
|
|
||||||
|
ui <- fluidPage(
|
||||||
|
titlePanel("GovCon Bid Analyzer"),
|
||||||
|
tableOutput("bid_table")
|
||||||
|
)
|
||||||
|
|
||||||
|
server <- function(input, output) {
|
||||||
|
conn <- duckdb.connect("govcon.db")
|
||||||
|
output$bid_table <- renderTable({
|
||||||
|
conn.execute("""
|
||||||
|
SELECT Title, Agency, AwardCeiling,
|
||||||
|
CASE WHEN Amendments < 2 THEN 'High Win Chance'
|
||||||
|
ELSE 'Low Win Chance' END AS BidRecommendation
|
||||||
|
FROM sam_bids
|
||||||
|
WHERE NAICS = '541511' -- IT services
|
||||||
|
""").df()
|
||||||
|
})
|
||||||
|
}
|
||||||
|
shinyApp(ui, server)
|
||||||
|
```
|
||||||
|
|
||||||
|
**Sell It As**:
|
||||||
|
- **"Bid prioritization dashboard"** ($1,000 one-time).
|
||||||
|
- **"Monthly updated version"** ($200/month).
|
||||||
|
|
||||||
|
**Target Buyers**:
|
||||||
|
- Small primes managing multiple bids.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### **Execution Plan: First 7 Days**
|
||||||
|
| Day | Task | Deliverable Created |
|
||||||
|
|-----|---------------------------------------|-------------------------------|
|
||||||
|
| 1 | Scrape SAM.gov into DuckDB. | SQLite DB of active IT bids. |
|
||||||
|
| 2 | Build LaTeX template + GPT-4 script. | Auto-drafted SF-1449 PDF. |
|
||||||
|
| 3 | Configure Invoice Ninja. | FAR-compliant invoice template.|
|
||||||
|
| 4 | Create Shiny bid analyzer. | Local "Bid/No-Bid" dashboard. |
|
||||||
|
| 5 | Post samples on LinkedIn/Reddit. | 3 leads generated. |
|
||||||
|
| 6 | Close 1 sale ($200–$500). | First paid client. |
|
||||||
|
| 7 | Refine based on feedback. | V2 of your tools. |
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### **Key Takeaways**
|
||||||
|
1. **You’re selling data products, not hours**:
|
||||||
|
- Databases, templates, dashboards → **scalable deliverables**.
|
||||||
|
2. **Start small, price aggressively**:
|
||||||
|
- $200–$500 for "done-for-you" fixes beats $0 from overthinking.
|
||||||
|
3. **Your unfair advantage**:
|
||||||
|
- **Network engineers** understand systems → you automate better than "business bros".
|
||||||
|
|
||||||
|
**Next Step**:
|
||||||
|
- **Pick *one* deliverable above and build it today**.
|
||||||
|
- **DM me the result**—I’ll help you tweak the pitch.
|
||||||
|
|
||||||
|
No more theory. Just **code, sell, repeat**.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
Exactly! You've identified the core value proposition. Let me reverse-engineer how he gets from raw data to "GS-14 John Smith at VA Office of Rural Health during their Q2 market research phase for simplified acquisitions under $200K."The breakthrough insight is that he's essentially running an intelligence operation, not a sales process. He's gathering three types of asymmetric information:
|
Exactly! You've identified the core value proposition. Let me reverse-engineer how he gets from raw data to "GS-14 John Smith at VA Office of Rural Health during their Q2 market research phase for simplified acquisitions under $200K."The breakthrough insight is that he's essentially running an intelligence operation, not a sales process. He's gathering three types of asymmetric information:
|
||||||
|
|
||||||
1. **WHO** makes the decisions (names, roles, contact info)
|
1. **WHO** makes the decisions (names, roles, contact info)
|
||||||
|
|||||||
Reference in New Issue
Block a user