diff --git a/work/tbx/Meraki_Dashboard_API_for_IoT_and_ML_Integrations.md b/work/tbx/Meraki_Dashboard_API_for_IoT_and_ML_Integrations.md index b8bae1f..48a9382 100644 --- a/work/tbx/Meraki_Dashboard_API_for_IoT_and_ML_Integrations.md +++ b/work/tbx/Meraki_Dashboard_API_for_IoT_and_ML_Integrations.md @@ -1,3 +1,215 @@ +### High-Level Jenkins Pipeline Outline for Leveraging Meraki Dashboard API for IoT and ML Integrations + +This Jenkins pipeline will manage the entire workflow from data ingestion to model deployment and monitoring, ensuring a streamlined and automated process. Here's an outline of the complete pipeline: + +--- + +### I. Setup Stage + +#### Purpose: +- Prepare the environment for the subsequent stages. +- Install necessary dependencies and tools. + +#### Steps: +1. **Initialize Environment** + - Install Docker and Kubernetes CLI. + - Install Python and necessary libraries (e.g., pandas, NumPy, scikit-learn, TensorFlow, PyTorch). + - Setup virtual environment for Python dependencies. + +2. **Install Dependencies** + - Install Meraki SDK and MQTT libraries. + - Install any other required dependencies listed in `requirements.txt`. + +#### Code: +```groovy +stage('Setup') { + steps { + script { + sh 'sudo apt-get update' + sh 'sudo apt-get install -y docker.io' + sh 'sudo apt-get install -y kubectl' + sh 'pip install virtualenv' + sh 'virtualenv venv' + sh '. venv/bin/activate' + sh 'pip install -r requirements.txt' + } + } +} +``` + +### II. Data Ingestion Stage + +#### Purpose: +- Fetch and store sensor data using the Meraki API and MQTT. + +#### Steps: +1. **API Configuration** + - Configure API access and fetch data. + +2. **MQTT Client Setup** + - Setup MQTT client to subscribe and ingest sensor data. + +3. **Database Connection** + - Connect to TimescaleDB and prepare for data storage. + +4. **Ingest Data** + - Store fetched data into the database. + +#### Code: +```groovy +stage('Data Ingestion') { + steps { + script { + sh 'python scripts/configure_api_access.py' + sh 'python scripts/setup_mqtt_client.py' + sh 'python scripts/connect_to_database.py' + sh 'python scripts/ingest_data.py' + } + } +} +``` + +### III. Data Processing and Transformation Stage + +#### Purpose: +- Normalize, segment, and integrate data for model training. + +#### Steps: +1. **Normalize Data** + - Normalize the sensor data. + +2. **Segment Data** + - Segment the data for model input. + +3. **Integrate Data** + - Merge data from multiple sensors into a comprehensive dataset. + +#### Code: +```groovy +stage('Data Processing and Transformation') { + steps { + script { + sh 'python scripts/normalize_data.py' + sh 'python scripts/segment_data.py' + sh 'python scripts/integrate_data.py' + } + } +} +``` + +### IV. Model Development and Training Stage + +#### Purpose: +- Define, train, and validate machine learning models. + +#### Steps: +1. **Define Model Architecture** + - Set up the architecture for ML models including transformers and vision models. + +2. **Train Models** + - Train the models using historical sensor data. + +3. **Validate Models** + - Validate and fine-tune model performance. + +#### Code: +```groovy +stage('Model Development and Training') { + steps { + script { + sh 'python scripts/define_model_architecture.py' + sh 'python scripts/train_model.py' + sh 'python scripts/validate_model.py' + } + } +} +``` + +### V. Deployment and Integration Stage + +#### Purpose: +- Deploy models using Docker and Kubernetes, and integrate them with real-time data streams. + +#### Steps: +1. **Containerize Models** + - Package models into Docker containers. + +2. **Deploy to Kubernetes** + - Deploy containers to a Kubernetes cluster. + +3. **Real-time Integration** + - Integrate models with real-time data streams for live predictions. + +#### Code: +```groovy +stage('Deployment and Integration') { + steps { + script { + sh 'docker build -t my_model_image .' + sh 'kubectl apply -f k8s/deployment.yaml' + sh 'python scripts/integrate_real_time_predictions.py' + } + } +} +``` + +### VI. Visualization and Monitoring Stage + +#### Purpose: +- Set up dashboards for data visualization and configure automated alerts. + +#### Steps: +1. **Configure Dashboards** + - Setup Grafana dashboards for data visualization. + +2. **Setup Alerts** + - Configure automated alerts for anomalies and critical events. + +3. **Monitor System** + - Continuously monitor system performance and sensor data. + +#### Code: +```groovy +stage('Visualization and Monitoring') { + steps { + script { + sh 'python scripts/configure_dashboard.py' + sh 'python scripts/setup_alerts.py' + sh 'python scripts/monitor_system.py' + } + } +} +``` + +### VII. Cleanup Stage + +#### Purpose: +- Clean up resources and temporary files to maintain the environment. + +#### Steps: +1. **Cleanup** + - Remove temporary files and containers. + - Ensure the environment is reset for the next pipeline run. + +#### Code: +```groovy +stage('Cleanup') { + steps { + script { + sh 'docker system prune -f' + sh 'kubectl delete -f k8s/deployment.yaml' + sh 'rm -rf venv' + } + } +} +``` + +### Summary + +This high-level Jenkins pipeline outline provides a comprehensive framework for automating the workflow of leveraging Meraki's API for IoT and ML integrations. Each stage addresses a specific part of the process, ensuring a cohesive and streamlined deployment from data ingestion to visualization and monitoring. + +--- + ### I. Data Ingestion Layer #### Function Responsibilities: