Update smma/grant_starting.md
This commit is contained in:
@@ -1,3 +1,504 @@
|
||||
# Government Funding ML Pipeline Architecture
|
||||
|
||||
## Feature Engineering Pipeline
|
||||
|
||||
### **1. Time Series Features**
|
||||
|
||||
```python
|
||||
class TemporalFeatureEngine:
|
||||
def generate_agency_cycles(self, historical_awards):
|
||||
"""Extract funding seasonality patterns"""
|
||||
features = {}
|
||||
|
||||
# Quarterly funding patterns
|
||||
features['q1_funding_ratio'] = self.calc_quarterly_ratio(awards, 1)
|
||||
features['q2_funding_ratio'] = self.calc_quarterly_ratio(awards, 2)
|
||||
features['peak_funding_month'] = self.find_peak_month(awards)
|
||||
features['funding_volatility'] = self.calc_funding_std(awards)
|
||||
|
||||
# Deadline patterns
|
||||
features['avg_opportunity_duration'] = self.calc_avg_duration(opportunities)
|
||||
features['deadline_clustering_score'] = self.calc_deadline_clusters(opportunities)
|
||||
|
||||
return features
|
||||
|
||||
def generate_opportunity_timing(self, opportunity):
|
||||
"""Real-time timing features for scoring"""
|
||||
return {
|
||||
'days_to_deadline': (opportunity.deadline - datetime.now()).days,
|
||||
'is_peak_season': self.is_peak_funding_season(opportunity.agency, opportunity.deadline),
|
||||
'deadline_competition_score': self.estimate_deadline_competition(opportunity),
|
||||
'seasonal_success_multiplier': self.get_seasonal_multiplier(opportunity)
|
||||
}
|
||||
```
|
||||
|
||||
### **2. Competitive Landscape Features**
|
||||
|
||||
```python
|
||||
class CompetitiveFeatureEngine:
|
||||
def generate_market_features(self, opportunity, historical_data):
|
||||
"""Generate competitive intelligence features"""
|
||||
|
||||
# Market concentration analysis
|
||||
similar_opps = self.find_similar_opportunities(opportunity, lookback_years=3)
|
||||
|
||||
features = {
|
||||
# Competition density
|
||||
'historical_applicant_count_avg': np.mean([o.applicant_count for o in similar_opps]),
|
||||
'market_concentration_hhi': self.calc_hhi_index(similar_opps),
|
||||
'new_entrant_success_rate': self.calc_new_entrant_rate(similar_opps),
|
||||
|
||||
# Winner analysis
|
||||
'repeat_winner_dominance': self.calc_repeat_winner_share(similar_opps),
|
||||
'avg_winner_org_size': self.calc_avg_winner_characteristics(similar_opps),
|
||||
'geographic_competition_score': self.calc_geo_competition(opportunity),
|
||||
|
||||
# Opportunity characteristics
|
||||
'opportunity_complexity_score': self.score_complexity(opportunity.requirements),
|
||||
'funding_amount_percentile': self.calc_amount_percentile(opportunity, similar_opps),
|
||||
'agency_selectivity_score': self.calc_agency_selectivity(opportunity.agency)
|
||||
}
|
||||
|
||||
return features
|
||||
```
|
||||
|
||||
### **3. Graph/Network Features**
|
||||
|
||||
```python
|
||||
class NetworkFeatureEngine:
|
||||
def __init__(self):
|
||||
self.recipient_graph = self.build_recipient_network()
|
||||
self.agency_graph = self.build_agency_hierarchy()
|
||||
|
||||
def generate_network_features(self, recipient_id=None, agency_code=None):
|
||||
"""Generate graph-based features"""
|
||||
features = {}
|
||||
|
||||
if recipient_id:
|
||||
# Recipient network features
|
||||
features.update({
|
||||
'recipient_centrality_score': self.calc_centrality(recipient_id),
|
||||
'collaboration_network_size': self.get_collaboration_count(recipient_id),
|
||||
'partner_success_influence': self.calc_partner_influence(recipient_id),
|
||||
'network_diversity_score': self.calc_network_diversity(recipient_id)
|
||||
})
|
||||
|
||||
if agency_code:
|
||||
# Agency hierarchy features
|
||||
features.update({
|
||||
'parent_agency_funding_power': self.get_parent_agency_budget(agency_code),
|
||||
'agency_collaboration_score': self.calc_inter_agency_collabs(agency_code),
|
||||
'bureaucracy_complexity_score': self.calc_agency_complexity(agency_code)
|
||||
})
|
||||
|
||||
return features
|
||||
```
|
||||
|
||||
### **4. NLP Features**
|
||||
|
||||
```python
|
||||
class TextFeatureEngine:
|
||||
def __init__(self):
|
||||
self.vectorizer = TfidfVectorizer(max_features=1000, stop_words='english')
|
||||
self.bert_model = AutoModel.from_pretrained('bert-base-uncased')
|
||||
self.requirement_classifier = self.load_requirement_classifier()
|
||||
|
||||
def generate_text_features(self, opportunity):
|
||||
"""Extract features from opportunity text"""
|
||||
|
||||
# Basic text statistics
|
||||
desc_length = len(opportunity.description)
|
||||
title_length = len(opportunity.title)
|
||||
|
||||
# Requirement complexity
|
||||
requirements = self.extract_requirements(opportunity.description)
|
||||
req_complexity = self.score_requirement_complexity(requirements)
|
||||
|
||||
# Semantic similarity to successful awards
|
||||
embedding = self.get_bert_embedding(opportunity.description)
|
||||
similarity_scores = self.calc_similarity_to_winners(embedding)
|
||||
|
||||
# Keyword analysis
|
||||
critical_keywords = self.extract_critical_keywords(opportunity.description)
|
||||
|
||||
return {
|
||||
'description_length': desc_length,
|
||||
'title_length': title_length,
|
||||
'requirement_complexity_score': req_complexity,
|
||||
'avg_similarity_to_successful': np.mean(similarity_scores),
|
||||
'critical_keyword_count': len(critical_keywords),
|
||||
'technical_complexity_score': self.score_technical_complexity(opportunity.description),
|
||||
'eligibility_restrictiveness': self.score_eligibility_restrictions(requirements)
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## ML Models Architecture
|
||||
|
||||
### **Model 1: Opportunity Success Probability**
|
||||
|
||||
```python
|
||||
class OpportunitySuccessModel:
|
||||
def __init__(self):
|
||||
self.model = LGBMRegressor(
|
||||
n_estimators=500,
|
||||
learning_rate=0.01,
|
||||
num_leaves=31,
|
||||
feature_fraction=0.8,
|
||||
bagging_fraction=0.8,
|
||||
random_state=42
|
||||
)
|
||||
|
||||
def prepare_features(self, opportunity, recipient_profile=None):
|
||||
"""Combine all feature engines"""
|
||||
features = {}
|
||||
|
||||
# Time-based features
|
||||
temporal_engine = TemporalFeatureEngine()
|
||||
features.update(temporal_engine.generate_opportunity_timing(opportunity))
|
||||
|
||||
# Competitive features
|
||||
competitive_engine = CompetitiveFeatureEngine()
|
||||
features.update(competitive_engine.generate_market_features(opportunity))
|
||||
|
||||
# Text features
|
||||
text_engine = TextFeatureEngine()
|
||||
features.update(text_engine.generate_text_features(opportunity))
|
||||
|
||||
# Recipient-specific features (if provided)
|
||||
if recipient_profile:
|
||||
features.update(self.generate_recipient_fit_score(opportunity, recipient_profile))
|
||||
|
||||
return pd.DataFrame([features])
|
||||
|
||||
def predict_success_probability(self, opportunity, recipient_profile=None):
|
||||
"""Main prediction interface"""
|
||||
features = self.prepare_features(opportunity, recipient_profile)
|
||||
probability = self.model.predict_proba(features)[0][1] # Probability of success
|
||||
|
||||
# Add explainability
|
||||
feature_importance = self.get_feature_importance(features)
|
||||
|
||||
return {
|
||||
'success_probability': float(probability),
|
||||
'confidence_interval': self.calculate_confidence_interval(features),
|
||||
'key_factors': feature_importance[:5], # Top 5 contributing factors
|
||||
'risk_factors': self.identify_risk_factors(features)
|
||||
}
|
||||
```
|
||||
|
||||
### **Model 2: Market Forecasting**
|
||||
|
||||
```python
|
||||
class MarketForecastingModel:
|
||||
def __init__(self):
|
||||
self.prophet_model = Prophet(
|
||||
seasonality_mode='multiplicative',
|
||||
yearly_seasonality=True,
|
||||
weekly_seasonality=False,
|
||||
daily_seasonality=False
|
||||
)
|
||||
self.xgboost_model = XGBRegressor(n_estimators=200, max_depth=6)
|
||||
|
||||
def forecast_agency_funding(self, agency_code, months_ahead=12):
|
||||
"""Forecast funding volume by agency"""
|
||||
|
||||
# Get historical funding data
|
||||
historical_data = self.get_agency_historical_funding(agency_code)
|
||||
|
||||
# Prophet for trend/seasonality
|
||||
prophet_forecast = self.prophet_model.fit(historical_data).predict(
|
||||
self.make_future_dataframe(periods=months_ahead, freq='M')
|
||||
)
|
||||
|
||||
# XGBoost for external factors
|
||||
external_features = self.generate_external_features(agency_code, months_ahead)
|
||||
xgb_adjustment = self.xgboost_model.predict(external_features)
|
||||
|
||||
# Ensemble prediction
|
||||
final_forecast = prophet_forecast['yhat'] * xgb_adjustment
|
||||
|
||||
return {
|
||||
'monthly_funding_forecast': final_forecast.tolist(),
|
||||
'confidence_bounds': {
|
||||
'lower': prophet_forecast['yhat_lower'].tolist(),
|
||||
'upper': prophet_forecast['yhat_upper'].tolist()
|
||||
},
|
||||
'key_drivers': self.explain_forecast_drivers(external_features),
|
||||
'risk_assessment': self.assess_forecast_risks(agency_code)
|
||||
}
|
||||
|
||||
def predict_market_size(self, category, geographic_scope, timeframe):
|
||||
"""Predict total addressable market"""
|
||||
historical_market_data = self.aggregate_historical_by_category(category, geographic_scope)
|
||||
|
||||
# Feature engineering for market prediction
|
||||
features = self.generate_market_features(category, geographic_scope, timeframe)
|
||||
|
||||
return {
|
||||
'predicted_market_size': self.market_size_model.predict(features)[0],
|
||||
'growth_rate': self.calculate_growth_rate(historical_market_data),
|
||||
'market_maturity_score': self.score_market_maturity(category),
|
||||
'competitive_intensity': self.calculate_competitive_intensity(category)
|
||||
}
|
||||
```
|
||||
|
||||
### **Model 3: Requirement Classification & Complexity Scoring**
|
||||
|
||||
```python
|
||||
class RequirementAnalysisModel:
|
||||
def __init__(self):
|
||||
# Fine-tuned BERT for requirement classification
|
||||
self.requirement_classifier = AutoModelForSequenceClassification.from_pretrained(
|
||||
'bert-base-uncased',
|
||||
num_labels=len(self.requirement_categories)
|
||||
)
|
||||
self.tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
||||
|
||||
# Complexity scoring model
|
||||
self.complexity_model = RandomForestRegressor(n_estimators=100, random_state=42)
|
||||
|
||||
def analyze_requirements(self, opportunity_text):
|
||||
"""Comprehensive requirement analysis"""
|
||||
|
||||
# Extract and classify requirements
|
||||
requirements = self.extract_requirements_with_bert(opportunity_text)
|
||||
|
||||
# Score complexity
|
||||
complexity_features = self.generate_complexity_features(requirements)
|
||||
complexity_score = self.complexity_model.predict([complexity_features])[0]
|
||||
|
||||
# Identify critical compliance items
|
||||
compliance_items = self.identify_compliance_requirements(requirements)
|
||||
|
||||
return {
|
||||
'requirement_categories': requirements,
|
||||
'complexity_score': float(complexity_score),
|
||||
'estimated_preparation_time': self.estimate_prep_time(complexity_score),
|
||||
'critical_compliance_items': compliance_items,
|
||||
'similar_successful_applications': self.find_similar_successful_apps(requirements),
|
||||
'risk_factors': self.identify_requirement_risks(requirements)
|
||||
}
|
||||
|
||||
def generate_application_strategy(self, requirements, recipient_profile):
|
||||
"""Generate strategic recommendations"""
|
||||
|
||||
# Analyze fit between requirements and recipient capabilities
|
||||
capability_gap_analysis = self.analyze_capability_gaps(requirements, recipient_profile)
|
||||
|
||||
# Recommend strategy
|
||||
strategy = {
|
||||
'recommended_approach': self.recommend_approach(capability_gap_analysis),
|
||||
'partnership_suggestions': self.suggest_partnerships(capability_gap_analysis),
|
||||
'capability_development_priorities': self.prioritize_capability_development(capability_gap_analysis),
|
||||
'timeline_recommendations': self.recommend_timeline(requirements, recipient_profile),
|
||||
'budget_allocation_suggestions': self.suggest_budget_allocation(requirements)
|
||||
}
|
||||
|
||||
return strategy
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Feature Store Architecture
|
||||
|
||||
### **OLAP Feature Tables**
|
||||
|
||||
```sql
|
||||
-- Opportunity features (denormalized for fast ML inference)
|
||||
CREATE TABLE opportunity_features (
|
||||
opportunity_id UUID PRIMARY KEY,
|
||||
|
||||
-- Temporal features
|
||||
days_to_deadline INTEGER,
|
||||
is_peak_season BOOLEAN,
|
||||
seasonal_success_multiplier DECIMAL,
|
||||
|
||||
-- Competitive features
|
||||
estimated_applicant_count INTEGER,
|
||||
market_concentration_hhi DECIMAL,
|
||||
competition_score DECIMAL,
|
||||
|
||||
-- Text features
|
||||
complexity_score DECIMAL,
|
||||
similarity_to_successful DECIMAL,
|
||||
technical_difficulty DECIMAL,
|
||||
|
||||
-- Network features
|
||||
agency_selectivity_score DECIMAL,
|
||||
bureaucracy_complexity DECIMAL,
|
||||
|
||||
-- Computed at feature generation time
|
||||
feature_version INTEGER,
|
||||
created_at TIMESTAMP,
|
||||
updated_at TIMESTAMP
|
||||
);
|
||||
|
||||
-- Agency intelligence features
|
||||
CREATE TABLE agency_features (
|
||||
agency_code VARCHAR(10) PRIMARY KEY,
|
||||
|
||||
-- Funding patterns
|
||||
avg_monthly_funding DECIMAL,
|
||||
funding_volatility DECIMAL,
|
||||
peak_funding_quarters INTEGER[],
|
||||
|
||||
-- Behavioral patterns
|
||||
avg_award_timeline_days INTEGER,
|
||||
selectivity_score DECIMAL,
|
||||
repeat_winner_preference DECIMAL,
|
||||
|
||||
-- Updated monthly
|
||||
feature_version INTEGER,
|
||||
updated_at TIMESTAMP
|
||||
);
|
||||
|
||||
-- Recipient profile features
|
||||
CREATE TABLE recipient_features (
|
||||
recipient_id UUID PRIMARY KEY,
|
||||
|
||||
-- Historical performance
|
||||
total_awards INTEGER,
|
||||
success_rate DECIMAL,
|
||||
avg_award_amount DECIMAL,
|
||||
specialization_scores JSONB,
|
||||
|
||||
-- Network analysis
|
||||
collaboration_network_size INTEGER,
|
||||
partner_influence_score DECIMAL,
|
||||
|
||||
-- Updated after each new award
|
||||
feature_version INTEGER,
|
||||
updated_at TIMESTAMP
|
||||
);
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Real-Time ML Inference Pipeline
|
||||
|
||||
```python
|
||||
class MLInferenceEngine:
|
||||
def __init__(self):
|
||||
self.models = {
|
||||
'success_probability': OpportunitySuccessModel(),
|
||||
'market_forecasting': MarketForecastingModel(),
|
||||
'requirement_analysis': RequirementAnalysisModel()
|
||||
}
|
||||
self.feature_store = FeatureStore()
|
||||
|
||||
def score_opportunity(self, opportunity_id, recipient_id=None):
|
||||
"""Main scoring interface combining all models"""
|
||||
|
||||
# Get base opportunity data
|
||||
opportunity = self.get_opportunity(opportunity_id)
|
||||
|
||||
# Load pre-computed features from feature store
|
||||
opp_features = self.feature_store.get_opportunity_features(opportunity_id)
|
||||
|
||||
# Generate recipient-specific features if provided
|
||||
recipient_features = None
|
||||
if recipient_id:
|
||||
recipient_features = self.feature_store.get_recipient_features(recipient_id)
|
||||
|
||||
# Run all models
|
||||
results = {}
|
||||
|
||||
# Success probability
|
||||
results['success_analysis'] = self.models['success_probability'].predict_success_probability(
|
||||
opportunity, recipient_features
|
||||
)
|
||||
|
||||
# Market context
|
||||
results['market_analysis'] = self.models['market_forecasting'].predict_market_size(
|
||||
opportunity.category, opportunity.geographic_scope, '12M'
|
||||
)
|
||||
|
||||
# Requirement analysis
|
||||
results['requirement_analysis'] = self.models['requirement_analysis'].analyze_requirements(
|
||||
opportunity.description
|
||||
)
|
||||
|
||||
# Generate strategic recommendations
|
||||
results['strategic_recommendations'] = self.generate_strategic_recommendations(
|
||||
opportunity, results, recipient_features
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
def generate_strategic_recommendations(self, opportunity, ml_results, recipient_profile):
|
||||
"""Combine ML outputs into actionable recommendations"""
|
||||
|
||||
recommendations = {
|
||||
'overall_recommendation': self.calculate_overall_recommendation(ml_results),
|
||||
'optimal_timing': self.recommend_timing(ml_results),
|
||||
'partnership_strategy': self.recommend_partnerships(ml_results, recipient_profile),
|
||||
'preparation_checklist': self.generate_prep_checklist(ml_results),
|
||||
'competitive_positioning': self.recommend_positioning(ml_results),
|
||||
'risk_mitigation': self.recommend_risk_mitigation(ml_results)
|
||||
}
|
||||
|
||||
return recommendations
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Model Training & Deployment Pipeline
|
||||
|
||||
```python
|
||||
class MLPipelineOrchestrator:
|
||||
def __init__(self):
|
||||
self.feature_engines = self.initialize_feature_engines()
|
||||
self.models = self.initialize_models()
|
||||
self.mlflow_client = MlflowClient()
|
||||
|
||||
def retrain_models(self, model_name=None):
|
||||
"""Automated model retraining pipeline"""
|
||||
|
||||
models_to_retrain = [model_name] if model_name else self.models.keys()
|
||||
|
||||
for model in models_to_retrain:
|
||||
with mlflow.start_run(run_name=f"{model}_retrain_{datetime.now()}"):
|
||||
|
||||
# Load fresh training data
|
||||
training_data = self.load_training_data(model)
|
||||
|
||||
# Generate features
|
||||
features = self.generate_features_for_model(model, training_data)
|
||||
|
||||
# Train model
|
||||
trained_model = self.train_model(model, features)
|
||||
|
||||
# Evaluate performance
|
||||
metrics = self.evaluate_model(trained_model, features)
|
||||
|
||||
# Log to MLflow
|
||||
mlflow.log_metrics(metrics)
|
||||
mlflow.sklearn.log_model(trained_model, model)
|
||||
|
||||
# Deploy if performance improved
|
||||
if self.should_deploy(metrics, model):
|
||||
self.deploy_model(trained_model, model)
|
||||
|
||||
def deploy_model(self, model, model_name):
|
||||
"""Deploy model to production"""
|
||||
|
||||
# Register model in MLflow
|
||||
model_uri = f"runs:/{mlflow.active_run().info.run_id}/{model_name}"
|
||||
mlflow.register_model(model_uri, model_name)
|
||||
|
||||
# Update feature store schemas if needed
|
||||
self.update_feature_store_schema(model_name)
|
||||
|
||||
# Hot-swap in inference engine
|
||||
self.inference_engine.update_model(model_name, model)
|
||||
```
|
||||
|
||||
This architecture gives you a production-ready ML system that can provide sophisticated intelligence on government funding opportunities, going far beyond simple filtering to offer predictive insights, competitive analysis, and strategic recommendations.
|
||||
|
||||
---
|
||||
|
||||
Perfect! Now I see the full picture. You want to demonstrate your **end-to-end data engineering + ML capabilities** as a proof of concept for potential government data clients.
|
||||
|
||||
**The Strategic Play:** Build a sophisticated ML-powered analysis layer on top of your government funding ETL pipeline to show clients what's possible beyond basic filtering.
|
||||
|
||||
Reference in New Issue
Block a user