Update smma/grant_starting.md

This commit is contained in:
2025-07-30 22:06:24 -05:00
parent 42599834ed
commit 5ad3ce1f63

View File

@@ -1,3 +1,504 @@
# Government Funding ML Pipeline Architecture
## Feature Engineering Pipeline
### **1. Time Series Features**
```python
class TemporalFeatureEngine:
def generate_agency_cycles(self, historical_awards):
"""Extract funding seasonality patterns"""
features = {}
# Quarterly funding patterns
features['q1_funding_ratio'] = self.calc_quarterly_ratio(awards, 1)
features['q2_funding_ratio'] = self.calc_quarterly_ratio(awards, 2)
features['peak_funding_month'] = self.find_peak_month(awards)
features['funding_volatility'] = self.calc_funding_std(awards)
# Deadline patterns
features['avg_opportunity_duration'] = self.calc_avg_duration(opportunities)
features['deadline_clustering_score'] = self.calc_deadline_clusters(opportunities)
return features
def generate_opportunity_timing(self, opportunity):
"""Real-time timing features for scoring"""
return {
'days_to_deadline': (opportunity.deadline - datetime.now()).days,
'is_peak_season': self.is_peak_funding_season(opportunity.agency, opportunity.deadline),
'deadline_competition_score': self.estimate_deadline_competition(opportunity),
'seasonal_success_multiplier': self.get_seasonal_multiplier(opportunity)
}
```
### **2. Competitive Landscape Features**
```python
class CompetitiveFeatureEngine:
def generate_market_features(self, opportunity, historical_data):
"""Generate competitive intelligence features"""
# Market concentration analysis
similar_opps = self.find_similar_opportunities(opportunity, lookback_years=3)
features = {
# Competition density
'historical_applicant_count_avg': np.mean([o.applicant_count for o in similar_opps]),
'market_concentration_hhi': self.calc_hhi_index(similar_opps),
'new_entrant_success_rate': self.calc_new_entrant_rate(similar_opps),
# Winner analysis
'repeat_winner_dominance': self.calc_repeat_winner_share(similar_opps),
'avg_winner_org_size': self.calc_avg_winner_characteristics(similar_opps),
'geographic_competition_score': self.calc_geo_competition(opportunity),
# Opportunity characteristics
'opportunity_complexity_score': self.score_complexity(opportunity.requirements),
'funding_amount_percentile': self.calc_amount_percentile(opportunity, similar_opps),
'agency_selectivity_score': self.calc_agency_selectivity(opportunity.agency)
}
return features
```
### **3. Graph/Network Features**
```python
class NetworkFeatureEngine:
def __init__(self):
self.recipient_graph = self.build_recipient_network()
self.agency_graph = self.build_agency_hierarchy()
def generate_network_features(self, recipient_id=None, agency_code=None):
"""Generate graph-based features"""
features = {}
if recipient_id:
# Recipient network features
features.update({
'recipient_centrality_score': self.calc_centrality(recipient_id),
'collaboration_network_size': self.get_collaboration_count(recipient_id),
'partner_success_influence': self.calc_partner_influence(recipient_id),
'network_diversity_score': self.calc_network_diversity(recipient_id)
})
if agency_code:
# Agency hierarchy features
features.update({
'parent_agency_funding_power': self.get_parent_agency_budget(agency_code),
'agency_collaboration_score': self.calc_inter_agency_collabs(agency_code),
'bureaucracy_complexity_score': self.calc_agency_complexity(agency_code)
})
return features
```
### **4. NLP Features**
```python
class TextFeatureEngine:
def __init__(self):
self.vectorizer = TfidfVectorizer(max_features=1000, stop_words='english')
self.bert_model = AutoModel.from_pretrained('bert-base-uncased')
self.requirement_classifier = self.load_requirement_classifier()
def generate_text_features(self, opportunity):
"""Extract features from opportunity text"""
# Basic text statistics
desc_length = len(opportunity.description)
title_length = len(opportunity.title)
# Requirement complexity
requirements = self.extract_requirements(opportunity.description)
req_complexity = self.score_requirement_complexity(requirements)
# Semantic similarity to successful awards
embedding = self.get_bert_embedding(opportunity.description)
similarity_scores = self.calc_similarity_to_winners(embedding)
# Keyword analysis
critical_keywords = self.extract_critical_keywords(opportunity.description)
return {
'description_length': desc_length,
'title_length': title_length,
'requirement_complexity_score': req_complexity,
'avg_similarity_to_successful': np.mean(similarity_scores),
'critical_keyword_count': len(critical_keywords),
'technical_complexity_score': self.score_technical_complexity(opportunity.description),
'eligibility_restrictiveness': self.score_eligibility_restrictions(requirements)
}
```
---
## ML Models Architecture
### **Model 1: Opportunity Success Probability**
```python
class OpportunitySuccessModel:
def __init__(self):
self.model = LGBMRegressor(
n_estimators=500,
learning_rate=0.01,
num_leaves=31,
feature_fraction=0.8,
bagging_fraction=0.8,
random_state=42
)
def prepare_features(self, opportunity, recipient_profile=None):
"""Combine all feature engines"""
features = {}
# Time-based features
temporal_engine = TemporalFeatureEngine()
features.update(temporal_engine.generate_opportunity_timing(opportunity))
# Competitive features
competitive_engine = CompetitiveFeatureEngine()
features.update(competitive_engine.generate_market_features(opportunity))
# Text features
text_engine = TextFeatureEngine()
features.update(text_engine.generate_text_features(opportunity))
# Recipient-specific features (if provided)
if recipient_profile:
features.update(self.generate_recipient_fit_score(opportunity, recipient_profile))
return pd.DataFrame([features])
def predict_success_probability(self, opportunity, recipient_profile=None):
"""Main prediction interface"""
features = self.prepare_features(opportunity, recipient_profile)
probability = self.model.predict_proba(features)[0][1] # Probability of success
# Add explainability
feature_importance = self.get_feature_importance(features)
return {
'success_probability': float(probability),
'confidence_interval': self.calculate_confidence_interval(features),
'key_factors': feature_importance[:5], # Top 5 contributing factors
'risk_factors': self.identify_risk_factors(features)
}
```
### **Model 2: Market Forecasting**
```python
class MarketForecastingModel:
def __init__(self):
self.prophet_model = Prophet(
seasonality_mode='multiplicative',
yearly_seasonality=True,
weekly_seasonality=False,
daily_seasonality=False
)
self.xgboost_model = XGBRegressor(n_estimators=200, max_depth=6)
def forecast_agency_funding(self, agency_code, months_ahead=12):
"""Forecast funding volume by agency"""
# Get historical funding data
historical_data = self.get_agency_historical_funding(agency_code)
# Prophet for trend/seasonality
prophet_forecast = self.prophet_model.fit(historical_data).predict(
self.make_future_dataframe(periods=months_ahead, freq='M')
)
# XGBoost for external factors
external_features = self.generate_external_features(agency_code, months_ahead)
xgb_adjustment = self.xgboost_model.predict(external_features)
# Ensemble prediction
final_forecast = prophet_forecast['yhat'] * xgb_adjustment
return {
'monthly_funding_forecast': final_forecast.tolist(),
'confidence_bounds': {
'lower': prophet_forecast['yhat_lower'].tolist(),
'upper': prophet_forecast['yhat_upper'].tolist()
},
'key_drivers': self.explain_forecast_drivers(external_features),
'risk_assessment': self.assess_forecast_risks(agency_code)
}
def predict_market_size(self, category, geographic_scope, timeframe):
"""Predict total addressable market"""
historical_market_data = self.aggregate_historical_by_category(category, geographic_scope)
# Feature engineering for market prediction
features = self.generate_market_features(category, geographic_scope, timeframe)
return {
'predicted_market_size': self.market_size_model.predict(features)[0],
'growth_rate': self.calculate_growth_rate(historical_market_data),
'market_maturity_score': self.score_market_maturity(category),
'competitive_intensity': self.calculate_competitive_intensity(category)
}
```
### **Model 3: Requirement Classification & Complexity Scoring**
```python
class RequirementAnalysisModel:
def __init__(self):
# Fine-tuned BERT for requirement classification
self.requirement_classifier = AutoModelForSequenceClassification.from_pretrained(
'bert-base-uncased',
num_labels=len(self.requirement_categories)
)
self.tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
# Complexity scoring model
self.complexity_model = RandomForestRegressor(n_estimators=100, random_state=42)
def analyze_requirements(self, opportunity_text):
"""Comprehensive requirement analysis"""
# Extract and classify requirements
requirements = self.extract_requirements_with_bert(opportunity_text)
# Score complexity
complexity_features = self.generate_complexity_features(requirements)
complexity_score = self.complexity_model.predict([complexity_features])[0]
# Identify critical compliance items
compliance_items = self.identify_compliance_requirements(requirements)
return {
'requirement_categories': requirements,
'complexity_score': float(complexity_score),
'estimated_preparation_time': self.estimate_prep_time(complexity_score),
'critical_compliance_items': compliance_items,
'similar_successful_applications': self.find_similar_successful_apps(requirements),
'risk_factors': self.identify_requirement_risks(requirements)
}
def generate_application_strategy(self, requirements, recipient_profile):
"""Generate strategic recommendations"""
# Analyze fit between requirements and recipient capabilities
capability_gap_analysis = self.analyze_capability_gaps(requirements, recipient_profile)
# Recommend strategy
strategy = {
'recommended_approach': self.recommend_approach(capability_gap_analysis),
'partnership_suggestions': self.suggest_partnerships(capability_gap_analysis),
'capability_development_priorities': self.prioritize_capability_development(capability_gap_analysis),
'timeline_recommendations': self.recommend_timeline(requirements, recipient_profile),
'budget_allocation_suggestions': self.suggest_budget_allocation(requirements)
}
return strategy
```
---
## Feature Store Architecture
### **OLAP Feature Tables**
```sql
-- Opportunity features (denormalized for fast ML inference)
CREATE TABLE opportunity_features (
opportunity_id UUID PRIMARY KEY,
-- Temporal features
days_to_deadline INTEGER,
is_peak_season BOOLEAN,
seasonal_success_multiplier DECIMAL,
-- Competitive features
estimated_applicant_count INTEGER,
market_concentration_hhi DECIMAL,
competition_score DECIMAL,
-- Text features
complexity_score DECIMAL,
similarity_to_successful DECIMAL,
technical_difficulty DECIMAL,
-- Network features
agency_selectivity_score DECIMAL,
bureaucracy_complexity DECIMAL,
-- Computed at feature generation time
feature_version INTEGER,
created_at TIMESTAMP,
updated_at TIMESTAMP
);
-- Agency intelligence features
CREATE TABLE agency_features (
agency_code VARCHAR(10) PRIMARY KEY,
-- Funding patterns
avg_monthly_funding DECIMAL,
funding_volatility DECIMAL,
peak_funding_quarters INTEGER[],
-- Behavioral patterns
avg_award_timeline_days INTEGER,
selectivity_score DECIMAL,
repeat_winner_preference DECIMAL,
-- Updated monthly
feature_version INTEGER,
updated_at TIMESTAMP
);
-- Recipient profile features
CREATE TABLE recipient_features (
recipient_id UUID PRIMARY KEY,
-- Historical performance
total_awards INTEGER,
success_rate DECIMAL,
avg_award_amount DECIMAL,
specialization_scores JSONB,
-- Network analysis
collaboration_network_size INTEGER,
partner_influence_score DECIMAL,
-- Updated after each new award
feature_version INTEGER,
updated_at TIMESTAMP
);
```
---
## Real-Time ML Inference Pipeline
```python
class MLInferenceEngine:
def __init__(self):
self.models = {
'success_probability': OpportunitySuccessModel(),
'market_forecasting': MarketForecastingModel(),
'requirement_analysis': RequirementAnalysisModel()
}
self.feature_store = FeatureStore()
def score_opportunity(self, opportunity_id, recipient_id=None):
"""Main scoring interface combining all models"""
# Get base opportunity data
opportunity = self.get_opportunity(opportunity_id)
# Load pre-computed features from feature store
opp_features = self.feature_store.get_opportunity_features(opportunity_id)
# Generate recipient-specific features if provided
recipient_features = None
if recipient_id:
recipient_features = self.feature_store.get_recipient_features(recipient_id)
# Run all models
results = {}
# Success probability
results['success_analysis'] = self.models['success_probability'].predict_success_probability(
opportunity, recipient_features
)
# Market context
results['market_analysis'] = self.models['market_forecasting'].predict_market_size(
opportunity.category, opportunity.geographic_scope, '12M'
)
# Requirement analysis
results['requirement_analysis'] = self.models['requirement_analysis'].analyze_requirements(
opportunity.description
)
# Generate strategic recommendations
results['strategic_recommendations'] = self.generate_strategic_recommendations(
opportunity, results, recipient_features
)
return results
def generate_strategic_recommendations(self, opportunity, ml_results, recipient_profile):
"""Combine ML outputs into actionable recommendations"""
recommendations = {
'overall_recommendation': self.calculate_overall_recommendation(ml_results),
'optimal_timing': self.recommend_timing(ml_results),
'partnership_strategy': self.recommend_partnerships(ml_results, recipient_profile),
'preparation_checklist': self.generate_prep_checklist(ml_results),
'competitive_positioning': self.recommend_positioning(ml_results),
'risk_mitigation': self.recommend_risk_mitigation(ml_results)
}
return recommendations
```
---
## Model Training & Deployment Pipeline
```python
class MLPipelineOrchestrator:
def __init__(self):
self.feature_engines = self.initialize_feature_engines()
self.models = self.initialize_models()
self.mlflow_client = MlflowClient()
def retrain_models(self, model_name=None):
"""Automated model retraining pipeline"""
models_to_retrain = [model_name] if model_name else self.models.keys()
for model in models_to_retrain:
with mlflow.start_run(run_name=f"{model}_retrain_{datetime.now()}"):
# Load fresh training data
training_data = self.load_training_data(model)
# Generate features
features = self.generate_features_for_model(model, training_data)
# Train model
trained_model = self.train_model(model, features)
# Evaluate performance
metrics = self.evaluate_model(trained_model, features)
# Log to MLflow
mlflow.log_metrics(metrics)
mlflow.sklearn.log_model(trained_model, model)
# Deploy if performance improved
if self.should_deploy(metrics, model):
self.deploy_model(trained_model, model)
def deploy_model(self, model, model_name):
"""Deploy model to production"""
# Register model in MLflow
model_uri = f"runs:/{mlflow.active_run().info.run_id}/{model_name}"
mlflow.register_model(model_uri, model_name)
# Update feature store schemas if needed
self.update_feature_store_schema(model_name)
# Hot-swap in inference engine
self.inference_engine.update_model(model_name, model)
```
This architecture gives you a production-ready ML system that can provide sophisticated intelligence on government funding opportunities, going far beyond simple filtering to offer predictive insights, competitive analysis, and strategic recommendations.
---
Perfect! Now I see the full picture. You want to demonstrate your **end-to-end data engineering + ML capabilities** as a proof of concept for potential government data clients. Perfect! Now I see the full picture. You want to demonstrate your **end-to-end data engineering + ML capabilities** as a proof of concept for potential government data clients.
**The Strategic Play:** Build a sophisticated ML-powered analysis layer on top of your government funding ETL pipeline to show clients what's possible beyond basic filtering. **The Strategic Play:** Build a sophisticated ML-powered analysis layer on top of your government funding ETL pipeline to show clients what's possible beyond basic filtering.