Update financial_docs/ml_trading.md

This commit is contained in:
2024-06-02 00:28:38 +00:00
parent c75a640153
commit 63decc0e68

View File

@@ -1,3 +1,312 @@
Certainly! Let's break down the Python code for each component of the forex time series analysis pipeline and highlight the important values and parameters. I'll use pseudocode for unnecessary code to keep the focus on the key aspects.
### 1. Data Preparation
```python
import requests
import pandas as pd
from timescaledb import TimescaleDB
# OANDA API configuration
API_KEY = "your_api_key"
ACCOUNT_ID = "your_account_id"
OANDA_URL = "https://api-fxtrade.oanda.com"
# TimescaleDB configuration
DB_HOST = "your_host"
DB_PORT = "your_port"
DB_NAME = "your_database"
DB_USER = "your_username"
DB_PASSWORD = "your_password"
def fetch_forex_data(instrument, start_date, end_date, granularity):
# Fetch forex data from OANDA API
# Handle authentication, API rate limits, and error handling
# Return the retrieved data as a DataFrame
def preprocess_data(data):
# Fill missing values using forward fill or interpolation
# Handle outliers using z-score normalization or Tukey's fences
# Normalize or standardize the data
# Return the preprocessed data
def store_data(data, db_connection):
# Store the preprocessed data in TimescaleDB
# Utilize TimescaleDB's hypertable feature for optimal performance
# Implement efficient data insertion queries
# Initialize TimescaleDB connection
db_connection = TimescaleDB(DB_HOST, DB_PORT, DB_NAME, DB_USER, DB_PASSWORD)
# Fetch and preprocess forex data
instrument = "EUR_USD"
start_date = "2022-01-01"
end_date = "2023-06-01"
granularity = "H1" # Hourly data
forex_data = fetch_forex_data(instrument, start_date, end_date, granularity)
preprocessed_data = preprocess_data(forex_data)
# Store the preprocessed data in TimescaleDB
store_data(preprocessed_data, db_connection)
```
Important values and parameters:
- `API_KEY`, `ACCOUNT_ID`, `OANDA_URL`: OANDA API configuration for fetching forex data.
- `DB_HOST`, `DB_PORT`, `DB_NAME`, `DB_USER`, `DB_PASSWORD`: TimescaleDB configuration for storing preprocessed data.
- `instrument`: The forex pair to analyze (e.g., "EUR_USD").
- `start_date`, `end_date`: The date range for fetching historical data.
- `granularity`: The timeframe of the data (e.g., "H1" for hourly data).
### 2. Feature Engineering
```python
import numpy as np
import pandas as pd
from timescaledb import TimescaleDB
def create_lag_features(data, lag_values):
# Create lag features by shifting the time series data
# Use the specified lag values (e.g., [1, 2, 3, 6, 12, 24])
# Return the data with lag features
def calculate_rolling_statistics(data, window_sizes):
# Calculate rolling mean, variance, and standard deviation
# Use the specified window sizes (e.g., [5, 10, 20, 50, 100])
# Implement efficient algorithms for feature generation
# Return the data with rolling statistics
def store_engineered_features(data, db_connection):
# Store the engineered features in TimescaleDB
# Extend the database schema to accommodate the new features
# Optimize data insertion queries for efficient storage
# Retrieve preprocessed data from TimescaleDB
preprocessed_data = retrieve_data(db_connection)
# Create lag features
lag_values = [1, 2, 3, 6, 12, 24]
data_with_lags = create_lag_features(preprocessed_data, lag_values)
# Calculate rolling statistics
window_sizes = [5, 10, 20, 50, 100]
data_with_rolling_stats = calculate_rolling_statistics(data_with_lags, window_sizes)
# Store the engineered features in TimescaleDB
store_engineered_features(data_with_rolling_stats, db_connection)
```
Important values and parameters:
- `lag_values`: The lag values used for creating lag features (e.g., [1, 2, 3, 6, 12, 24]).
- `window_sizes`: The window sizes used for calculating rolling statistics (e.g., [5, 10, 20, 50, 100]).
### 3. Correlation Analysis
```python
import numpy as np
import pandas as pd
from timescaledb import TimescaleDB
import seaborn as sns
import matplotlib.pyplot as plt
def calculate_correlation_matrix(data):
# Calculate the Pearson correlation coefficient between forex pairs
# Handle missing values and ensure proper alignment of time series data
# Implement efficient algorithms for correlation calculation
# Return the correlation matrix
def visualize_correlation_matrix(correlation_matrix):
# Create a heatmap to visualize the correlation matrix
# Use seaborn or matplotlib to generate the visualization
# Highlight highly correlated pairs
def store_correlation_results(correlation_matrix, db_connection):
# Store the correlation results in TimescaleDB
# Design a suitable database schema for storing correlation matrices
# Optimize data insertion queries for efficient storage
# Retrieve feature-engineered data from TimescaleDB
feature_engineered_data = retrieve_data(db_connection)
# Calculate the correlation matrix
correlation_matrix = calculate_correlation_matrix(feature_engineered_data)
# Visualize the correlation matrix
visualize_correlation_matrix(correlation_matrix)
# Store the correlation results in TimescaleDB
store_correlation_results(correlation_matrix, db_connection)
```
Important values and parameters:
- `feature_engineered_data`: The feature-engineered data retrieved from TimescaleDB.
- `correlation_matrix`: The calculated correlation matrix.
### 4. Trend Identification
```python
import numpy as np
import pandas as pd
from timescaledb import TimescaleDB
def calculate_moving_averages(data, window_sizes):
# Calculate simple moving averages (SMA) and exponential moving averages (EMA)
# Use the specified window sizes (e.g., [10, 20, 50, 100, 200])
# Implement efficient algorithms for moving average calculation
# Return the data with moving averages
def calculate_trend_indicators(data):
# Calculate trend indicators (e.g., MACD, RSI)
# Implement the necessary calculations for each indicator
# Return the data with trend indicators
def store_trend_data(data, db_connection):
# Store the trend data in TimescaleDB
# Extend the database schema to incorporate trend indicators and moving averages
# Optimize data insertion queries for efficient storage
# Retrieve feature-engineered data from TimescaleDB
feature_engineered_data = retrieve_data(db_connection)
# Calculate moving averages
window_sizes = [10, 20, 50, 100, 200]
data_with_moving_averages = calculate_moving_averages(feature_engineered_data, window_sizes)
# Calculate trend indicators
data_with_trend_indicators = calculate_trend_indicators(data_with_moving_averages)
# Store the trend data in TimescaleDB
store_trend_data(data_with_trend_indicators, db_connection)
```
Important values and parameters:
- `window_sizes`: The window sizes used for calculating moving averages (e.g., [10, 20, 50, 100, 200]).
- `data_with_moving_averages`: The data with calculated moving averages.
- `data_with_trend_indicators`: The data with calculated trend indicators.
### 5. Model Training
```python
import numpy as np
import pandas as pd
from timescaledb import TimescaleDB
from statsmodels.tsa.arima.model import ARIMA
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
from transformers import TFAutoModelForSequenceClassification, AutoTokenizer
def prepare_data_for_training(db_connection):
# Retrieve feature-engineered data from TimescaleDB
# Design efficient queries to fetch relevant features and target variables
# Implement data batching and caching mechanisms to optimize data loading
# Handle data preprocessing steps specific to each model
# Return the prepared data for training
def train_arima_model(data, p, d, q):
# Train the ARIMA model using the specified p, d, q parameters
# Evaluate the model's performance
# Return the trained ARIMA model
def train_lstm_model(data, num_layers, hidden_units, dropout, learning_rate, batch_size, epochs):
# Design the LSTM network architecture
# Select appropriate hyperparameters
# Implement the LSTM model using TensorFlow or PyTorch
# Train the LSTM model on the prepared data
# Return the trained LSTM model
def train_transformer_model(data, model_name, num_labels, learning_rate, batch_size, epochs):
# Load the pre-trained Transformer model and tokenizer
# Build the Transformer model architecture
# Train the Transformer model using the specified hyperparameters
# Return the trained Transformer model
def store_trained_models(arima_model, lstm_model, transformer_model, db_connection):
# Serialize and store the trained models
# Store the associated preprocessing scalers
# Implement versioning and metadata management for model tracking
# Prepare data for training
training_data = prepare_data_for_training(db_connection)
# Train ARIMA model
p, d, q = 2, 1, 2 # Specify the optimal p, d, q parameters
arima_model = train_arima_model(training_data, p, d, q)
# Train LSTM model
num_layers = 2
hidden_units = 64
dropout = 0.2
learning_rate = 0.001
batch_size = 32
epochs = 50
lstm_model = train_lstm_model(training_data, num_layers, hidden_units, dropout, learning_rate, batch_size, epochs)
# Train Transformer model
model_name = "transformer_model"
num_labels = 2 # Binary classification (up/down trend)
learning_rate = 0.00001
batch_size = 16
epochs = 10
transformer_model = train_transformer_model(training_data, model_name, num_labels, learning_rate, batch_size, epochs)
# Store the trained models
store_trained_models(arima_model, lstm_model, transformer_model, db_connection)
```
Important values and parameters:
- `p`, `d`, `q`: The optimal p, d, q parameters for the ARIMA model.
- `num_layers`, `hidden_units`, `dropout`, `learning_rate`, `batch_size`, `epochs`: Hyperparameters for the LSTM model.
- `model_name`, `num_labels`, `learning_rate`, `batch_size`, `epochs`: Hyperparameters for the Transformer model.
### 6. Model Evaluation
```python
import numpy as np
import pandas as pd
from timescaledb import TimescaleDB
from sklearn.metrics import mean_squared_error
def evaluate_model(model, test_data):
# Evaluate the model using the test data
# Calculate the Root Mean Squared Error (RMSE)
# Implement cross-validation techniques (e.g., rolling window, time series split)
# Return the evaluation metrics
def store_evaluation_results(model_name, evaluation_metrics, db_connection):
# Store the evaluation results in TimescaleDB
# Design a database schema to store model evaluation metrics and configurations
# Implement data insertion queries for efficient storage
# Retrieve the trained models and test data
arima_model = load_trained_model("arima_model")
lstm_model = load_trained_model("lstm_model")
transformer_model = load_trained_model("transformer_model")
test_data = prepare_test_data(db_connection)
# Evaluate ARIMA model
arima_metrics = evaluate_model(arima_model, test_data)
store_evaluation_results("arima_model", arima_metrics, db_connection)
# Evaluate LSTM model
lstm_metrics = evaluate_model(lstm_model, test_data)
store_evaluation_results("lstm_model", lstm_metrics, db_connection)
# Evaluate Transformer model
transformer_metrics = evaluate_model(transformer_model, test_data)
store_evaluation_results("transformer_model", transformer_metrics, db_connection)
```
Important values and parameters:
- `test_data`: The test data used for model evaluation.
- `arima_metrics`, `lstm_metrics`, `transformer_metrics`: The evaluation metrics obtained for each model.
This pseudocode provides an overview of the Python code structure for each component of the forex time series analysis pipeline. The important values and parameters are highlighted for each section, focusing on the key aspects that influence the performance and accuracy of the models.
Remember to adapt the code based on your specific requirements, libraries, and frameworks. The pseudocode sections can be replaced with the actual implementation code, taking into account the necessary data structures, algorithms, and best practices for each component.
---
### Technical Guide for Forex Time Series Analysis Using AI/ML Models
#### Objective