Add tech_docs/database/lotto_project_repo.md
This commit is contained in:
223
tech_docs/database/lotto_project_repo.md
Normal file
223
tech_docs/database/lotto_project_repo.md
Normal file
@@ -0,0 +1,223 @@
|
||||
I'm glad that resonated with you! Working with **historical data** (like a 3-digit daily lottery draw) is a great way to practice **OLAP concepts**, time-series analysis, and trend forecasting. Here’s how you can approach it, along with learning resources and tools:
|
||||
|
||||
---
|
||||
|
||||
### **Step 1: Collect Historical Lottery Data**
|
||||
- **Example Data Structure (3-digit daily draw):**
|
||||
```plaintext
|
||||
DrawDate | Number | SumOfDigits | EvenOddPattern | DayOfWeek
|
||||
-----------|--------|-------------|----------------|-----------
|
||||
2024-01-01 | 537 | 15 | Odd-Odd-Odd | Monday
|
||||
2024-01-02 | 214 | 7 | Even-Odd-Even | Tuesday
|
||||
...
|
||||
```
|
||||
- **Where to Get Data:**
|
||||
- Public lottery archives (e.g., [state lottery websites](https://www.lotteryusa.com/)).
|
||||
- APIs (if available) or scrape data (with permission).
|
||||
- Synthetic data generation (Python’s `pandas`/`numpy` for practice).
|
||||
|
||||
---
|
||||
|
||||
### **Step 2: Choose Your Tool Stack**
|
||||
#### **Option 1: SQL-Based OLAP (Best for Scalability)**
|
||||
- **Tools:** PostgreSQL (with TimescaleDB), Snowflake, BigQuery.
|
||||
- **Schema Design (Star Schema for OLAP):**
|
||||
```sql
|
||||
-- Fact Table
|
||||
CREATE TABLE fact_draws (
|
||||
draw_id INT,
|
||||
draw_date DATE,
|
||||
number INT,
|
||||
sum_of_digits INT,
|
||||
pattern_id INT -- FK to dim_patterns
|
||||
);
|
||||
|
||||
-- Dimension Tables
|
||||
CREATE TABLE dim_patterns (
|
||||
pattern_id INT,
|
||||
even_odd_pattern VARCHAR(20) -- e.g., "Odd-Even-Even"
|
||||
);
|
||||
```
|
||||
- **Example Query (Trend Analysis):**
|
||||
```sql
|
||||
-- "Most common Even/Odd patterns by month"
|
||||
SELECT
|
||||
EXTRACT(MONTH FROM draw_date) AS month,
|
||||
dim_patterns.even_odd_pattern,
|
||||
COUNT(*) AS frequency
|
||||
FROM fact_draws
|
||||
JOIN dim_patterns ON fact_draws.pattern_id = dim_patterns.pattern_id
|
||||
GROUP BY month, even_odd_pattern
|
||||
ORDER BY month, frequency DESC;
|
||||
```
|
||||
|
||||
#### **Option 2: Python + Jupyter Notebooks (Best for Prototyping)**
|
||||
- **Libraries:** `pandas`, `matplotlib`, `statsmodels`.
|
||||
- **Example Analysis:**
|
||||
```python
|
||||
import pandas as pd
|
||||
|
||||
# Load historical data
|
||||
df = pd.read_csv("lotto_draws.csv")
|
||||
|
||||
# Analyze frequency of numbers
|
||||
df['number'].value_counts().head(10).plot(kind='bar');
|
||||
```
|
||||

|
||||
|
||||
#### **Option 3: BI Tools (Best for Visualization)**
|
||||
- **Tools:** Power BI, Tableau, Metabase.
|
||||
- **Example Dashboard:**
|
||||
- Heatmap of number frequencies by day of week.
|
||||
- Time-series of sums of digits (to spot outliers).
|
||||
|
||||
---
|
||||
|
||||
### **Step 3: Learn Key Techniques**
|
||||
1. **Time-Series Analysis:**
|
||||
- Rolling averages (e.g., "7-day moving average of sums").
|
||||
- Seasonality detection (e.g., "Are weekends luckier?").
|
||||
|
||||
2. **Probability Basics:**
|
||||
- Calculate observed vs. expected frequencies (Chi-square tests).
|
||||
- Identify biases (e.g., is `111` drawn less often than expected?).
|
||||
|
||||
3. **Machine Learning (Optional):**
|
||||
- Predict next day’s sum range (regression).
|
||||
- Cluster patterns (unsupervised learning).
|
||||
|
||||
---
|
||||
|
||||
### **Step 4: Practice Projects**
|
||||
1. **Basic:**
|
||||
- "Which number has appeared most in the last 5 years?"
|
||||
- "Does the sum of digits follow a normal distribution?"
|
||||
|
||||
2. **Advanced:**
|
||||
- Build a dashboard showing real-time odds based on history.
|
||||
- Simulate 10,000 draws to test the "gambler’s fallacy."
|
||||
|
||||
---
|
||||
|
||||
### **Resources to Learn**
|
||||
- **SQL for OLAP:**
|
||||
- Book: *"Data Warehouse Toolkit"* by Kimball (star schema design).
|
||||
- Course: [Google’s Advanced SQL on Coursera](https://www.coursera.org/learn/advanced-sql).
|
||||
- **Python for Analysis:**
|
||||
- Book: *"Python for Data Analysis"* by Wes McKinney.
|
||||
- Tutorial: [Kaggle’s Time-Series Course](https://www.kaggle.com/learn/time-series).
|
||||
- **Probability:**
|
||||
- Book: *"Fifty Challenging Problems in Probability"* by Mosteller.
|
||||
|
||||
---
|
||||
|
||||
### **Key Insight**
|
||||
Lottery data is perfect for OLAP because:
|
||||
- It’s **append-only** (historical, no updates).
|
||||
- Queries are **analytical** (e.g., "What’s the trend?" not "What’s today’s number?").
|
||||
- You’ll learn **time dimensions** (day/week/month) and **aggregations** (counts, averages).
|
||||
|
||||
---
|
||||
|
||||
Great question! The choice between **normalized (3NF)** and **denormalized (star schema)** data models depends on whether you're optimizing for **OLTP (transaction processing)** or **OLAP (analytics)**. Let’s break it down:
|
||||
|
||||
---
|
||||
|
||||
### **1. Normalized Data Model (3NF – Third Normal Form)**
|
||||
**Used in:** OLTP systems (e.g., MySQL, PostgreSQL for transactional apps).
|
||||
**Goal:** Minimize redundancy, ensure data integrity, and optimize for fast writes.
|
||||
|
||||
#### **Key Features:**
|
||||
- **Split into multiple related tables** (eliminates duplicate data).
|
||||
- Uses **foreign keys** to enforce relationships.
|
||||
- Follows **normalization rules** (1NF, 2NF, 3NF, etc.).
|
||||
|
||||
#### **Example (E-commerce OLTP Database):**
|
||||
```plaintext
|
||||
Customers Table Orders Table Products Table
|
||||
+------------+ +-----------+ +------------+
|
||||
| CustomerID | | OrderID | | ProductID |
|
||||
| Name | | CustomerID| | Name |
|
||||
| Email | | OrderDate | | Price |
|
||||
+------------+ +-----------+ +------------+
|
||||
|
||||
Order_Details Table (Junction Table)
|
||||
+-------------------+
|
||||
| OrderDetailID |
|
||||
| OrderID |
|
||||
| ProductID |
|
||||
| Quantity |
|
||||
+-------------------+
|
||||
```
|
||||
- **Normalized (3NF)**: No duplicate data; updates are efficient.
|
||||
- **Downside for Analytics**: Complex joins slow down queries.
|
||||
|
||||
---
|
||||
|
||||
### **2. Denormalized Data Model (Star Schema)**
|
||||
**Used in:** OLAP systems (e.g., data warehouses like Snowflake, Redshift).
|
||||
**Goal:** Optimize for fast reads, reduce joins, and speed up analytical queries.
|
||||
|
||||
#### **Key Features:**
|
||||
- **Central fact table** (stores metrics like sales, revenue).
|
||||
- **Surrounded by dimension tables** (descriptive attributes like time, product, customer).
|
||||
- **Redundant data** (denormalized for faster queries).
|
||||
|
||||
#### **Example (Sales Data Warehouse):**
|
||||
```plaintext
|
||||
Fact_Sales (Fact Table)
|
||||
+-----------+-----------+-----------+------------+
|
||||
| SaleID | ProductID | CustomerID| TimeID |
|
||||
| Quantity | Revenue | Discount | Profit |
|
||||
+-----------+-----------+-----------+------------+
|
||||
|
||||
Dim_Product (Dimension Table)
|
||||
+-----------+-----------+-----------+
|
||||
| ProductID | Name | Category |
|
||||
+-----------+-----------+-----------+
|
||||
|
||||
Dim_Customer (Dimension Table)
|
||||
+-----------+-----------+-----------+
|
||||
| CustomerID| Name | Region |
|
||||
+-----------+-----------+-----------+
|
||||
|
||||
Dim_Time (Dimension Table)
|
||||
+-----------+-----------+-----------+
|
||||
| TimeID | Date | Quarter |
|
||||
+-----------+-----------+-----------+
|
||||
```
|
||||
- **Denormalized (Star Schema)**: Fewer joins, faster for analytics.
|
||||
- **Downside for OLTP**: Redundant data, harder to update.
|
||||
|
||||
---
|
||||
|
||||
### **Comparison Table**
|
||||
| Feature | Normalized (3NF) | Denormalized (Star Schema) |
|
||||
|----------------------|-------------------------------------|-------------------------------------|
|
||||
| **Structure** | Many tables, linked via foreign keys | Few tables (fact + dimensions) |
|
||||
| **Data Redundancy** | Minimal (normalized) | High (denormalized for speed) |
|
||||
| **Query Performance** | Slower for analytics (many joins) | Faster for analytics (fewer joins) |
|
||||
| **Write Performance** | Fast (optimized for OLTP) | Slow (batch updates in OLAP) |
|
||||
| **Use Case** | OLTP (banking, e-commerce) | OLAP (BI, reporting, dashboards) |
|
||||
| **Example Databases** | MySQL, PostgreSQL (transactional) | Snowflake, Redshift (data warehouse)|
|
||||
|
||||
---
|
||||
|
||||
### **When to Use Which?**
|
||||
- **Use Normalized (3NF) if:**
|
||||
- You need **ACID compliance** (transactions must be reliable).
|
||||
- Your app is **write-heavy** (e.g., order processing).
|
||||
- Data integrity is critical (no duplicates).
|
||||
|
||||
- **Use Denormalized (Star Schema) if:**
|
||||
- You need **fast analytical queries**.
|
||||
- Your system is **read-heavy** (e.g., BI tools like Power BI).
|
||||
- You’re working with **historical data** (not real-time updates).
|
||||
|
||||
---
|
||||
|
||||
### **Real-World Analogy**
|
||||
- **Normalized (OLTP)** = A **library’s database** where each book, author, and borrower is stored separately (efficient for updates).
|
||||
- **Denormalized (OLAP)** = A **summary report** where book sales, author info, and time trends are merged for quick analysis.
|
||||
|
||||
Would you like a deeper dive into **snowflake schema** (a variant of star schema) or how ETL pipelines transform normalized OLTP data into denormalized OLAP formats?
|
||||
Reference in New Issue
Block a user