diff --git a/tech_docs/music/extract_mp3_tracks.md b/tech_docs/music/extract_mp3_tracks.md new file mode 100644 index 0000000..01722dd --- /dev/null +++ b/tech_docs/music/extract_mp3_tracks.md @@ -0,0 +1,278 @@ +### Analyze Programmatically Using Librosa for Detailed Feature Extraction and PyDub for Automated Audio Manipulations + +#### Librosa: Detailed Feature Extraction + +Librosa is a powerful library for audio and music analysis. It provides a range of tools to extract and visualize audio features, making it highly useful for music production. Here are some key features and ideas on how to use them: + +1. **Loading Audio Files** + - Load audio files with a specified sample rate. + ```python + import librosa + + y, sr = librosa.load('output/vocals.wav', sr=44100) + ``` + +2. **Visualizing Waveforms** + - Visualize the audio waveform to understand the overall structure. + ```python + import librosa.display + import matplotlib.pyplot as plt + + plt.figure(figsize=(14, 5)) + librosa.display.waveshow(y, sr=sr) + plt.title('Waveform') + plt.show() + ``` + +3. **Spectrogram Analysis** + - Compute and display the spectrogram to analyze the frequency content over time. + ```python + D = np.abs(librosa.stft(y)) + DB = librosa.amplitude_to_db(D, ref=np.max) + + plt.figure(figsize=(14, 5)) + librosa.display.specshow(DB, sr=sr, x_axis='time', y_axis='log') + plt.colorbar(format='%+2.0f dB') + plt.title('Spectrogram') + plt.show() + ``` + +4. **Mel-frequency Cepstral Coefficients (MFCCs)** + - Extract MFCCs for timbral analysis, which are widely used in music and speech recognition. + ```python + mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13) + plt.figure(figsize=(14, 5)) + librosa.display.specshow(mfccs, sr=sr, x_axis='time') + plt.colorbar() + plt.title('MFCC') + plt.show() + ``` + +5. **Chroma Feature Extraction** + - Analyze harmonic content using chroma features, useful for chord recognition. + ```python + chroma = librosa.feature.chroma_stft(y=y, sr=sr) + plt.figure(figsize=(14, 5)) + librosa.display.specshow(chroma, sr=sr, x_axis='time', y_axis='chroma') + plt.colorbar() + plt.title('Chroma Feature') + plt.show() + ``` + +6. **Tempo and Beat Tracking** + - Estimate the tempo and detect beats in the audio, which can be useful for syncing and remixing. + ```python + tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr) + print(f'Tempo: {tempo} BPM') + + # Convert beat frames to time + beat_times = librosa.frames_to_time(beat_frames, sr=sr) + ``` + +7. **Onset Detection** + - Detect note onsets, which is useful for transcribing music or syncing effects. + ```python + onset_frames = librosa.onset.onset_detect(y=y, sr=sr) + onset_times = librosa.frames_to_time(onset_frames, sr=sr) + ``` + +#### PyDub: Automated Audio Manipulations + +PyDub is a high-level library for audio manipulation. It simplifies many common tasks, making it ideal for automated workflows in music production. + +1. **Loading Audio Files** + - Load audio files for manipulation. + ```python + from pydub import AudioSegment + + sound = AudioSegment.from_wav('output/vocals.wav') + ``` + +2. **Volume Adjustments** + - Increase or decrease the volume of audio segments. + ```python + louder_sound = sound + 6 # Increase volume by 6 dB + quieter_sound = sound - 6 # Decrease volume by 6 dB + ``` + +3. **Splitting and Merging Audio** + - Split and merge audio segments to rearrange parts of a track. + ```python + # Split audio at 30 seconds + first_part = sound[:30000] + second_part = sound[30000:] + + # Merge two audio segments + combined = first_part + second_part + ``` + +4. **Applying Effects** + - Apply various effects like reverb, fade in/out, and normalization. + ```python + # Apply fade in and fade out + faded_in = sound.fade_in(2000) # 2-second fade in + faded_out = sound.fade_out(2000) # 2-second fade out + + # Normalize the audio + normalized_sound = sound.normalize() + ``` + +5. **Exporting Audio Files** + - Export manipulated audio to different formats. + ```python + normalized_sound.export('output/normalized_vocals.wav', format='wav') + ``` + +6. **Batch Processing** + - Automate the processing of multiple files using loops and scripts. + ```python + import os + + input_directory = 'input_folder' + output_directory = 'output_folder' + + for filename in os.listdir(input_directory): + if filename.endswith('.wav'): + audio = AudioSegment.from_wav(os.path.join(input_directory, filename)) + # Apply some effects + louder_audio = audio + 6 + # Export the result + output_path = os.path.join(output_directory, filename) + louder_audio.export(output_path, format='wav') + ``` + +### Useful Ideas for Music Production + +1. **Creating Stems for Remixing**: + - Use Spleeter to create separate stems (vocals, drums, bass, etc.) from a mixed track, allowing for easy remixing and re-arranging of music elements. + +2. **Dynamic Sound Effects**: + - Use PyDub to automate the application of dynamic effects like volume changes, fades, and crossfades to create more engaging transitions in your music. + +3. **Beat Matching and Syncing**: + - Use Librosa’s tempo and beat detection features to match the beats of different tracks for seamless DJ mixing or mashups. + +4. **Harmonic Analysis for Mashups**: + - Use chroma feature extraction to analyze the harmonic content of tracks, making it easier to find compatible songs for mashups based on their harmonic profiles. + +5. **Transcription and Note Detection**: + - Use Librosa’s onset detection and MFCC features to transcribe music or detect notes, which can be useful for creating MIDI files or sheet music from audio recordings. + +6. **Automated Mastering**: + - Create scripts using PyDub to apply a series of mastering effects like normalization, equalization, and compression to batches of tracks, ensuring a consistent sound across an album. + +7. **Sound Design and Sampling**: + - Extract unique sounds or samples from existing tracks using Spleeter and manipulate them with PyDub to create new instruments or sound effects. + +8. **Visualization and Analysis for Education**: + - Use Librosa to visualize and analyze audio features, which can be useful for music education and understanding the structure and components of different music genres. + +By combining these tools and techniques, you can create a comprehensive and powerful workflow for music production on Linux, leveraging the strengths of both manual and automated processes to enhance your creative capabilities. +User +what Linux or Python tool can I utilize to capture mp3s, is there a way to capture from Youtube and or Youtube Music? +ChatGPT +To capture MP3s from YouTube or YouTube Music on Linux, you can use tools like `youtube-dl` or its actively maintained fork `yt-dlp`, combined with FFmpeg for audio extraction. These tools allow you to download videos and extract audio from them. + +### Using yt-dlp to Capture MP3s from YouTube + +#### 1. Install yt-dlp + +First, you need to install `yt-dlp`. You can do this using pip or by downloading the binary directly. + +**Using pip**: +```bash +pip install yt-dlp +``` + +**Using the binary**: +```bash +sudo wget https://github.com/yt-dlp/yt-dlp/releases/latest/download/yt-dlp -O /usr/local/bin/yt-dlp +sudo chmod a+rx /usr/local/bin/yt-dlp +``` + +#### 2. Install FFmpeg + +FFmpeg is required to convert the downloaded video to MP3. +```bash +sudo apt install ffmpeg +``` + +#### 3. Download and Convert to MP3 + +You can use `yt-dlp` to download the audio directly and convert it to MP3 format. Here’s how you can do it: + +**Download and convert a single video**: +```bash +yt-dlp -x --audio-format mp3 +``` + +**Download and convert a playlist**: +```bash +yt-dlp -x --audio-format mp3 -i +``` + +**Download and specify output directory and filename**: +```bash +yt-dlp -x --audio-format mp3 -o '~/Music/%(title)s.%(ext)s' +``` + +### Example Workflow + +1. **Install yt-dlp and FFmpeg**: + ```bash + pip install yt-dlp + sudo apt install ffmpeg + ``` + +2. **Download and convert a YouTube video to MP3**: + ```bash + yt-dlp -x --audio-format mp3 https://www.youtube.com/watch?v=dQw4w9WgXcQ + ``` + +3. **Download and convert a YouTube playlist to MP3**: + ```bash + yt-dlp -x --audio-format mp3 -i https://www.youtube.com/playlist?list=PL4o29bINVT4EG_y-k5jGoOu3-Am8Nvi10 + ``` + +### Advanced Options + +- **Set Audio Quality**: You can specify the audio quality by setting the `--audio-quality` option (e.g., `0` for best quality). + ```bash + yt-dlp -x --audio-format mp3 --audio-quality 0 + ``` + +- **Custom Post-processing**: You can use FFmpeg for custom post-processing. For example, normalize audio volume or change bitrate. + ```bash + yt-dlp -x --audio-format mp3 --postprocessor-args "-ar 44100 -b:a 192k" + ``` + +### Using Python Script with yt-dlp + +If you prefer to integrate this into a Python script, you can use the `yt_dlp` library directly. + +```python +import yt_dlp + +def download_audio(url, output_path): + ydl_opts = { + 'format': 'bestaudio/best', + 'postprocessors': [{ + 'key': 'FFmpegExtractAudio', + 'preferredcodec': 'mp3', + 'preferredquality': '192', + }], + 'outtmpl': output_path, + } + + with yt_dlp.YoutubeDL(ydl_opts) as ydl: + ydl.download([url]) + +# Example usage +url = 'https://www.youtube.com/watch?v=dQw4w9WgXcQ' +output_path = '~/Music/%(title)s.%(ext)s' +download_audio(url, output_path) +``` + +### Summary + +By using `yt-dlp` and FFmpeg, you can effectively download and convert YouTube videos to MP3 files on Linux. These tools offer a flexible and powerful way to capture audio from YouTube, making them ideal for music collection and other audio-related projects. \ No newline at end of file