Update financial_docs/vwap_atr.md
This commit is contained in:
@@ -1,55 +1,234 @@
|
||||
# 2SD VWAP Trading System
|
||||
Let me analyze the potential biases we've introduced into the system.
|
||||
|
||||
## Core Components
|
||||
```pine
|
||||
//@version=5
|
||||
indicator("2SD VWAP + ATR")
|
||||
|
||||
// Essential Elements
|
||||
vwap = ta.vwap
|
||||
stdev = ta.stdev(vwap, 15)
|
||||
atr = ta.atr(14)
|
||||
|
||||
// Bands
|
||||
upper = vwap + 2 * stdev
|
||||
lower = vwap - 2 * stdev
|
||||
```markdown
|
||||
# VWAP Trading System Bias Analysis
|
||||
|
||||
## Statistical Biases
|
||||
|
||||
1. Normal Distribution Assumption
|
||||
```
|
||||
Current Assumption:
|
||||
- 2SD captures 95% of price movement
|
||||
- Price returns to VWAP reliably
|
||||
|
||||
Reality Check:
|
||||
- Markets aren't normally distributed
|
||||
- Fat tails exist
|
||||
- Black swan events occur
|
||||
- VWAP reversion isn't guaranteed
|
||||
```
|
||||
|
||||
## Pattern Recognition
|
||||
1. Setup
|
||||
- ES 15m chart primary
|
||||
- BTC 15m chart secondary
|
||||
- Alert when price hits 2SD
|
||||
|
||||
2. Trade Signal
|
||||
- Price touches 2SD
|
||||
- Rejection occurs
|
||||
- No other conditions needed
|
||||
|
||||
## Position Sizing
|
||||
2. Sample Size Bias
|
||||
```
|
||||
Position = Account Risk / ATR
|
||||
Current Assumption:
|
||||
- 15-minute timeframe is optimal
|
||||
- 15-period standard deviation is meaningful
|
||||
|
||||
Reality Check:
|
||||
- Timeframe choice is arbitrary
|
||||
- Period selection lacks statistical validation
|
||||
- Different assets may require different parameters
|
||||
```
|
||||
Simple. Volatility-adjusted. No bias.
|
||||
|
||||
## Trade Management
|
||||
1. Entry
|
||||
- Pattern appears
|
||||
- Take position
|
||||
- Direction based on rejection
|
||||
3. Look-Ahead Bias
|
||||
```
|
||||
Current Assumption:
|
||||
- Rejections are clearly identifiable
|
||||
- Pattern completion is obvious
|
||||
|
||||
2. Exit
|
||||
- Pattern completes at VWAP
|
||||
- Or pattern breaks
|
||||
Reality Check:
|
||||
- Real-time pattern recognition is harder
|
||||
- Clean rejections only visible after the fact
|
||||
- Entry timing may vary
|
||||
```
|
||||
|
||||
## Reality Check
|
||||
- No time restrictions
|
||||
- No complex conditions
|
||||
- No perfect setups
|
||||
- Pattern exists or doesn't
|
||||
- ATR sizes position
|
||||
- That's it
|
||||
## Behavioral Biases
|
||||
|
||||
Raw Truth: Alert → Look → Size → Trade → Manage
|
||||
1. Confirmation Bias
|
||||
```
|
||||
Current Implementation:
|
||||
- Looking for "clean" moves to bands
|
||||
- Seeking "clear" rejections
|
||||
- Wanting "obvious" patterns
|
||||
|
||||
Everything else is noise.
|
||||
Risk:
|
||||
- Overlooking valid setups that look messy
|
||||
- Overoptimizing for perfect patterns
|
||||
- Missing profitable but imperfect trades
|
||||
```
|
||||
|
||||
2. Recency Bias
|
||||
```
|
||||
Current Implementation:
|
||||
- Assuming recent pattern success continues
|
||||
- Expecting consistent behavior
|
||||
|
||||
Risk:
|
||||
- Market regimes change
|
||||
- Pattern effectiveness varies
|
||||
- Success rate fluctuates
|
||||
```
|
||||
|
||||
3. Overconfidence Bias
|
||||
```
|
||||
Current Implementation:
|
||||
- "Pattern exists or doesn't"
|
||||
- Fixed position sizing
|
||||
- Predetermined targets
|
||||
|
||||
Risk:
|
||||
- Markets are probabilistic
|
||||
- No pattern is 100% reliable
|
||||
- Risk doesn't remain constant
|
||||
```
|
||||
|
||||
## Suggested Bias Mitigations
|
||||
|
||||
1. Statistical Adjustments:
|
||||
```python
|
||||
def calculate_position_size(self, atr, account_risk):
|
||||
# Add market regime consideration
|
||||
volatility_factor = self.get_volatility_regime()
|
||||
adjusted_risk = account_risk * volatility_factor
|
||||
|
||||
# Non-normal distribution adjustment
|
||||
tail_risk_factor = self.calculate_tail_risk()
|
||||
|
||||
return adjusted_risk / (atr * tail_risk_factor)
|
||||
```
|
||||
|
||||
2. Pattern Recognition Improvements:
|
||||
```python
|
||||
def validate_pattern(self, df):
|
||||
# Add probabilistic scoring
|
||||
pattern_score = 0
|
||||
|
||||
# Price action validation (70%)
|
||||
if self.validate_price_action(df):
|
||||
pattern_score += 70
|
||||
|
||||
# Volume confirmation (30%)
|
||||
if self.validate_volume(df):
|
||||
pattern_score += 30
|
||||
|
||||
# Return confidence level instead of binary
|
||||
return pattern_score / 100
|
||||
```
|
||||
|
||||
3. Risk Management Enhancements:
|
||||
```python
|
||||
def calculate_stop_distance(self, atr, pattern_quality):
|
||||
# Dynamic stop based on pattern quality
|
||||
base_stop = atr * 1.5
|
||||
|
||||
# Adjust for pattern clarity
|
||||
if pattern_quality < 0.8: # Less clear pattern
|
||||
return base_stop * 1.2 # Wider stop
|
||||
|
||||
return base_stop
|
||||
```
|
||||
|
||||
## Revised Core Principles
|
||||
|
||||
1. Replace Absolute Statements:
|
||||
- Old: "Pattern exists or doesn't"
|
||||
- New: "Pattern shows varying degrees of quality"
|
||||
|
||||
2. Acknowledge Uncertainty:
|
||||
- Old: "Exit at VWAP"
|
||||
- New: "VWAP is probable, not certain, target"
|
||||
|
||||
3. Dynamic Position Sizing:
|
||||
- Old: "Fixed risk/ATR"
|
||||
- New: "Adjust size based on pattern quality and market conditions"
|
||||
|
||||
4. Pattern Recognition:
|
||||
- Old: "Clear rejection signals reversal"
|
||||
- New: "Rejection suggests probable reversal with varying strength"
|
||||
|
||||
## Implementation Changes Needed
|
||||
|
||||
1. Add Pattern Quality Scoring:
|
||||
```
|
||||
- Price action clarity (40%)
|
||||
- Volume confirmation (30%)
|
||||
- Market context (30%)
|
||||
```
|
||||
|
||||
2. Dynamic Position Sizing:
|
||||
```
|
||||
Position = (Account Risk * Pattern Quality) / (ATR * Market Regime Factor)
|
||||
```
|
||||
|
||||
3. Flexible Targets:
|
||||
```
|
||||
- Primary: VWAP (60% probability)
|
||||
- Secondary: 50% retracement (30% probability)
|
||||
- Extended: Full band return (10% probability)
|
||||
```
|
||||
|
||||
4. Progressive Stops:
|
||||
```
|
||||
- Initial: Based on pattern structure
|
||||
- Trail: Adjusted for volatility
|
||||
- Time: Maximum hold period
|
||||
```
|
||||
|
||||
## Action Items
|
||||
|
||||
1. Add Pattern Quality Metrics:
|
||||
- Score each setup objectively
|
||||
- Track success by score
|
||||
- Adjust criteria based on results
|
||||
|
||||
2. Implement Regime Detection:
|
||||
- Monitor volatility changes
|
||||
- Track pattern effectiveness
|
||||
- Adjust parameters dynamically
|
||||
|
||||
3. Improve Position Sizing:
|
||||
- Consider pattern quality
|
||||
- Account for market regime
|
||||
- Include correlation factors
|
||||
|
||||
4. Enhance Risk Management:
|
||||
- Dynamic stop placement
|
||||
- Multiple exit strategies
|
||||
- Time-based risk reduction
|
||||
|
||||
The goal is not to eliminate bias (impossible) but to acknowledge and account for it in system design and execution.
|
||||
|
||||
```
|
||||
|
||||
Key Recommendations:
|
||||
|
||||
1. Statistical Improvements:
|
||||
- Add regime detection
|
||||
- Implement dynamic sizing
|
||||
- Consider non-normal distributions
|
||||
|
||||
2. Pattern Recognition:
|
||||
- Use quality scoring
|
||||
- Remove absolute statements
|
||||
- Add probability framework
|
||||
|
||||
3. Risk Management:
|
||||
- Dynamic stop placement
|
||||
- Multiple exit strategies
|
||||
- Pattern quality adjustments
|
||||
|
||||
4. System Adjustments:
|
||||
- Replace absolute rules with probabilities
|
||||
- Add quality metrics
|
||||
- Implement flexible sizing
|
||||
- Consider market regimes
|
||||
|
||||
Would you like me to:
|
||||
1. Detail specific implementation changes?
|
||||
2. Create a bias-adjusted strategy framework?
|
||||
3. Develop quality scoring metrics?
|
||||
4. Design regime detection logic?
|
||||
|
||||
The goal is to maintain system simplicity while acknowledging and accounting for inherent biases.
|
||||
Reference in New Issue
Block a user