Update projects/forex_algo_trading.md
This commit is contained in:
@@ -1,112 +1,75 @@
|
||||
To set up a virtual environment for your forex trading analysis project, you'll first need to decide on a folder structure that organizes your work efficiently. I'll guide you through creating this structure, setting up a virtual environment, and providing a basic `requirements.txt` file.
|
||||
# Swing Trading Project with EUR/USD Using Oanda and scikit-learn
|
||||
|
||||
### Project Folder Structure
|
||||
## Step 1: Environment Setup
|
||||
|
||||
Here's a suggested structure to keep your project organized:
|
||||
|
||||
```plaintext
|
||||
forex_analysis_project/
|
||||
│
|
||||
├── data/ # Store raw and processed forex data
|
||||
│ ├── raw/
|
||||
│ └── processed/
|
||||
│
|
||||
├── notebooks/ # Jupyter notebooks for exploration and analysis
|
||||
│
|
||||
├── src/ # Source code for the project
|
||||
│ ├── data_retrieval/ # Scripts for fetching and preprocessing data
|
||||
│ │ ├── __init__.py
|
||||
│ │ └── fetch_forex_data.py
|
||||
│ │
|
||||
│ ├── feature_engineering/ # Generate features from forex data
|
||||
│ │ ├── __init__.py
|
||||
│ │ └── features.py
|
||||
│ │
|
||||
│ ├── models/ # Machine learning and deep learning models
|
||||
│ │ ├── __init__.py
|
||||
│ │ ├── lstm_model.py # LSTM for time series prediction
|
||||
│ │ └── rag_model.py # RAG model integration
|
||||
│ │
|
||||
│ ├── inference/ # Inference logic for making predictions
|
||||
│ │ ├── __init__.py
|
||||
│ │ └── predict.py
|
||||
│ │
|
||||
│ └── utils/ # Utility functions and classes
|
||||
│ ├── __init__.py
|
||||
│ └── utils.py
|
||||
│
|
||||
├── tests/ # Unit and integration tests
|
||||
│ ├── __init__.py
|
||||
│ └── test_fetch_forex_data.py
|
||||
│
|
||||
├── requirements.txt # Project dependencies
|
||||
│
|
||||
└── Dockerfile # Containerize your project (optional)
|
||||
```
|
||||
|
||||
### Setting Up a Virtual Environment
|
||||
|
||||
**1. Creating a Virtual Environment:**
|
||||
|
||||
First, navigate to your project directory in the terminal, then run:
|
||||
### Install Python
|
||||
Ensure Python 3.8+ is installed.
|
||||
|
||||
### Create a Virtual Environment
|
||||
Navigate to your project directory and run:
|
||||
```bash
|
||||
python3 -m venv venv
|
||||
python -m venv venv
|
||||
source venv/bin/activate # Unix/macOS
|
||||
venv\Scripts\activate # Windows
|
||||
```
|
||||
|
||||
This command creates a virtual environment named `venv` within your project directory.
|
||||
|
||||
**2. Activating the Virtual Environment:**
|
||||
|
||||
- **On Windows:**
|
||||
|
||||
```bash
|
||||
venv\Scripts\activate
|
||||
```
|
||||
|
||||
- **On macOS and Linux:**
|
||||
|
||||
```bash
|
||||
source venv/bin/activate
|
||||
```
|
||||
|
||||
Once activated, you'll see the name of the virtual environment (`venv`) in your terminal prompt, indicating that any Python or pip commands will use the environments' packages and settings.
|
||||
|
||||
**3. Deactivating the Virtual Environment:**
|
||||
|
||||
When you're done working in the virtual environment, you can deactivate it by running:
|
||||
|
||||
```bash
|
||||
deactivate
|
||||
```
|
||||
|
||||
### `requirements.txt` File
|
||||
|
||||
Create a `requirements.txt` file in your project root directory (`forex_project/`) with the following content to specify the project dependencies:
|
||||
|
||||
### Install Essential Libraries
|
||||
Create `requirements.txt` with the following content:
|
||||
```
|
||||
pandas
|
||||
numpy
|
||||
matplotlib
|
||||
seaborn
|
||||
requests
|
||||
oandapyV20
|
||||
scikit-learn
|
||||
jupyterlab
|
||||
oandapyV20
|
||||
requests
|
||||
```
|
||||
Install with `pip install -r requirements.txt`.
|
||||
|
||||
## Step 2: Project Structure
|
||||
|
||||
Organize your directory as follows:
|
||||
```
|
||||
swing_trading_project/
|
||||
├── data/
|
||||
├── notebooks/
|
||||
├── src/
|
||||
│ ├── __init__.py
|
||||
│ ├── data_fetcher.py
|
||||
│ ├── feature_engineering.py
|
||||
│ ├── model.py
|
||||
│ └── backtester.py
|
||||
├── tests/
|
||||
├── requirements.txt
|
||||
└── README.md
|
||||
```
|
||||
|
||||
**Installing Dependencies:**
|
||||
## Step 3: Fetch Historical Data
|
||||
|
||||
With your virtual environment activated, install the project dependencies by running:
|
||||
- Sign up for an Oanda practice account and get an API key.
|
||||
- Use `oandapyV20` in `data_fetcher.py` to request historical EUR/USD data. Consider H4 or D granularity.
|
||||
- Save the data to `data/` as CSV.
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
## Step 4: Exploratory Data Analysis
|
||||
|
||||
This command reads the `requirements.txt` file and installs the specified versions of the packages into your virtual environment.
|
||||
- Create a new Jupyter notebook in `notebooks/`.
|
||||
- Load the CSV with `pandas` and perform initial exploration. Plot closing prices and moving averages.
|
||||
|
||||
### Final Steps
|
||||
## Step 5: Basic Feature Engineering
|
||||
|
||||
- **Developing Your Project:** Place your Python scripts in the `src/` directory, Jupyter notebooks in `notebooks/`, and any tests in `tests/`. Use the `data/` directory to store fetched data, such as CSV files.
|
||||
- **Using Jupyter Notebook:** If you want to use Jupyter Notebook for analysis, start it with `jupyter notebook` or `jupyter lab` if you're using JupyterLab, and it will open in your web browser. Ensure you're doing this with your virtual environment activated so that Jupyter can access your project's dependencies.
|
||||
- In the notebook, add technical indicators as features (e.g., SMA 50, SMA 200, RSI) using `pandas`.
|
||||
- Investigate the relationship between these features and price movements.
|
||||
|
||||
This setup provides a solid foundation for developing your forex trading analysis project, offering a clear separation of concerns and making it easier to manage dependencies and share your work with others.
|
||||
## Step 6: Initial Model Training
|
||||
|
||||
- In `model.py`, fit a simple `scikit-learn` model (e.g., LinearRegression, LogisticRegression) to predict price movements.
|
||||
- Split data into training and testing sets to evaluate the model's performance.
|
||||
|
||||
## Step 7: Documentation
|
||||
|
||||
- Document your project's setup, objectives, and findings in `README.md`.
|
||||
|
||||
## Next Steps
|
||||
|
||||
- Refine features, try different models, and develop a backtesting framework as you progress.
|
||||
Reference in New Issue
Block a user