Update smma/grant_starting.md
This commit is contained in:
@@ -1,3 +1,140 @@
|
|||||||
|
# Government Funding Data Business Strategy
|
||||||
|
|
||||||
|
## Executive Summary
|
||||||
|
|
||||||
|
**The Opportunity**: Transform messy government funding data (grants and contracts) into targeted, actionable intelligence for organizations that lack time/resources to navigate complex government portals.
|
||||||
|
|
||||||
|
**Recommended Entry Point**: Start with Grants.gov data extraction - easier technical implementation, clear market demand, lower risk of costly errors.
|
||||||
|
|
||||||
|
**Revenue Potential**: $150-500/month per client for targeted weekly alerts in specific niches.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Phase 1: Proof of Concept (Weeks 1-4)
|
||||||
|
*Goal: Build confidence with working technical solution*
|
||||||
|
|
||||||
|
### Week 1-2: Technical Foundation
|
||||||
|
- [ ] Download Grants.gov XML data extract
|
||||||
|
- [ ] Set up DuckDB environment
|
||||||
|
- [ ] Successfully parse XML into structured tables
|
||||||
|
- [ ] Create basic filtering queries
|
||||||
|
|
||||||
|
### Week 3-4: MVP Development
|
||||||
|
- [ ] Choose hyper-specific niche (e.g., "Mental Health Grants for Texas Nonprofits")
|
||||||
|
- [ ] Build filtering logic for chosen niche
|
||||||
|
- [ ] Generate clean CSV output with relevant opportunities
|
||||||
|
- [ ] Test with 2-3 recent weeks of data
|
||||||
|
|
||||||
|
**Success Metric**: Produce a filtered list of 5-15 highly relevant grants from a weekly data extract.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Phase 2: Market Validation (Weeks 5-8)
|
||||||
|
*Goal: Prove people will pay for this*
|
||||||
|
|
||||||
|
### Client Acquisition
|
||||||
|
- [ ] Identify 10-15 organizations in your chosen niche
|
||||||
|
- [ ] Reach out with free sample of your filtered results
|
||||||
|
- [ ] Schedule 3-5 discovery calls to understand pain points
|
||||||
|
- [ ] Refine filtering based on feedback
|
||||||
|
|
||||||
|
### Product Refinement
|
||||||
|
- [ ] Automate weekly data download and processing
|
||||||
|
- [ ] Create simple email template for delivery
|
||||||
|
- [ ] Set up basic payment system (Stripe/PayPal)
|
||||||
|
- [ ] Price test: Start at $150/month
|
||||||
|
|
||||||
|
**Success Metric**: Convert 2-3 organizations to paying clients.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Phase 3: Scale Foundation (Weeks 9-16)
|
||||||
|
*Goal: Systematic growth within grants niche*
|
||||||
|
|
||||||
|
### Operational Systems
|
||||||
|
- [ ] Fully automate weekly processing pipeline
|
||||||
|
- [ ] Create client onboarding process
|
||||||
|
- [ ] Develop 2-3 additional niches
|
||||||
|
- [ ] Build simple client portal/dashboard
|
||||||
|
|
||||||
|
### Business Development
|
||||||
|
- [ ] Target 10 clients across 3 niches
|
||||||
|
- [ ] Develop referral program
|
||||||
|
- [ ] Create case studies/testimonials
|
||||||
|
- [ ] Test pricing at $250-350/month for premium niches
|
||||||
|
|
||||||
|
**Success Metric**: $2,500-3,000 monthly recurring revenue.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Phase 4: Expansion (Month 5+)
|
||||||
|
*Goal: Add contracts data and premium services*
|
||||||
|
|
||||||
|
### Product Expansion
|
||||||
|
- [ ] Integrate USAspending.gov historical data
|
||||||
|
- [ ] Add SAM.gov contract opportunities
|
||||||
|
- [ ] Develop trend analysis reports
|
||||||
|
- [ ] Create API for enterprise clients
|
||||||
|
|
||||||
|
### Market Expansion
|
||||||
|
- [ ] Target government contractors
|
||||||
|
- [ ] Develop partnership channels
|
||||||
|
- [ ] Consider acquisition of complementary services
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Risk Mitigation
|
||||||
|
|
||||||
|
| Risk | Mitigation Strategy |
|
||||||
|
|------|-------------------|
|
||||||
|
| Technical complexity overwhelming me | Start small, focus on one data source, use proven tools (DuckDB) |
|
||||||
|
| No market demand | Validate with free samples before building full product |
|
||||||
|
| Competition from established players | Focus on underserved niches, compete on specificity not breadth |
|
||||||
|
| Data source changes breaking scripts | Build monitoring, maintain relationships with data providers |
|
||||||
|
| Client acquisition challenges | Start with warm network, provide immediate value, ask for referrals |
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Resource Requirements
|
||||||
|
|
||||||
|
### Technical Stack
|
||||||
|
- Python for data processing
|
||||||
|
- DuckDB for data analysis
|
||||||
|
- Basic web hosting for client portal
|
||||||
|
- Email automation tool
|
||||||
|
- Payment processing
|
||||||
|
|
||||||
|
### Time Investment
|
||||||
|
- **Weeks 1-4**: 15-20 hours/week
|
||||||
|
- **Weeks 5-8**: 10-15 hours/week
|
||||||
|
- **Ongoing**: 5-10 hours/week once systemized
|
||||||
|
|
||||||
|
### Financial Investment
|
||||||
|
- Minimal startup costs (<$100/month)
|
||||||
|
- Scales with revenue (payment processing fees, hosting)
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Success Metrics by Phase
|
||||||
|
|
||||||
|
**Phase 1**: Working technical solution that filters grants data
|
||||||
|
**Phase 2**: 2-3 paying clients, validated product-market fit
|
||||||
|
**Phase 3**: $3,000+ monthly recurring revenue
|
||||||
|
**Phase 4**: Diversified product line, sustainable growth engine
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Next Immediate Actions (This Week)
|
||||||
|
|
||||||
|
1. **Download latest Grants.gov XML extract** - verify you can access and open the files
|
||||||
|
2. **Set up DuckDB environment** - confirm you can load and query the XML data
|
||||||
|
3. **Choose your first niche** - pick something specific you can understand and validate quickly
|
||||||
|
4. **Create basic filter queries** - start with simple criteria (keywords, funding amounts, deadlines)
|
||||||
|
|
||||||
|
**Time commitment**: 3-4 hours to validate technical feasibility before proceeding further.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
Perfect. Design the full pipeline architecture but keep the logic layer completely pluggable. Here's the end-to-end structure:
|
Perfect. Design the full pipeline architecture but keep the logic layer completely pluggable. Here's the end-to-end structure:
|
||||||
|
|
||||||
**Data Flow Architecture:**
|
**Data Flow Architecture:**
|
||||||
@@ -385,4 +522,96 @@ sources:
|
|||||||
schedule: "monthly"
|
schedule: "monthly"
|
||||||
```
|
```
|
||||||
|
|
||||||
|
This layer just moves bytes around. Zero business logic. Want me to detail the validation layer next?
|
||||||
|
|
||||||
|
**Raw Data Ingestion Layer:**
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Base ingestion interface
|
||||||
|
class RawDataIngester:
|
||||||
|
def fetch_data(self, date_range=None):
|
||||||
|
"""Download raw data from source"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
def validate_data(self, raw_data):
|
||||||
|
"""Check file integrity, format"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
def store_raw(self, raw_data, metadata):
|
||||||
|
"""Store exactly as received with metadata"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
# Source-specific implementations
|
||||||
|
class GrantsGovIngester(RawDataIngester):
|
||||||
|
def fetch_data(self, date_range=None):
|
||||||
|
# Download XML extract ZIP
|
||||||
|
# Return file paths + metadata
|
||||||
|
pass
|
||||||
|
|
||||||
|
class USASpendingIngester(RawDataIngester):
|
||||||
|
def fetch_data(self, date_range=None):
|
||||||
|
# Download CSV files (Full/Delta)
|
||||||
|
# Handle multiple file types
|
||||||
|
pass
|
||||||
|
|
||||||
|
class SAMGovIngester(RawDataIngester):
|
||||||
|
def fetch_data(self, date_range=None):
|
||||||
|
# API calls or file downloads
|
||||||
|
pass
|
||||||
|
```
|
||||||
|
|
||||||
|
**Raw Storage Schema:**
|
||||||
|
|
||||||
|
```sql
|
||||||
|
-- Metadata tracking
|
||||||
|
raw_data_batches (
|
||||||
|
id, source, batch_type, file_path, file_size,
|
||||||
|
download_timestamp, validation_status, processing_status
|
||||||
|
)
|
||||||
|
|
||||||
|
-- Actual raw data (JSONB for flexibility)
|
||||||
|
raw_data_records (
|
||||||
|
id, batch_id, source, record_type,
|
||||||
|
raw_content JSONB, created_at
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
**File Management:**
|
||||||
|
- Store raw files in object storage (S3/MinIO)
|
||||||
|
- Database only stores metadata + file references
|
||||||
|
- Keep raw files for reprocessing/debugging
|
||||||
|
|
||||||
|
**Ingestion Orchestrator:**
|
||||||
|
|
||||||
|
```python
|
||||||
|
class IngestionOrchestrator:
|
||||||
|
def run_ingestion_cycle(self):
|
||||||
|
for source in self.active_sources:
|
||||||
|
try:
|
||||||
|
# Fetch, validate, store
|
||||||
|
# Track success/failure
|
||||||
|
# Trigger downstream processing
|
||||||
|
except Exception:
|
||||||
|
# Alert, retry logic
|
||||||
|
pass
|
||||||
|
```
|
||||||
|
|
||||||
|
**Key Features:**
|
||||||
|
- **Idempotent**: Can re-run safely
|
||||||
|
- **Resumable**: Track what's been processed
|
||||||
|
- **Auditable**: Full lineage from raw → processed
|
||||||
|
- **Flexible**: Easy to add new data sources
|
||||||
|
|
||||||
|
**Configuration Driven:**
|
||||||
|
```yaml
|
||||||
|
sources:
|
||||||
|
grants_gov:
|
||||||
|
enabled: true
|
||||||
|
schedule: "weekly"
|
||||||
|
url_pattern: "https://..."
|
||||||
|
usa_spending:
|
||||||
|
enabled: true
|
||||||
|
schedule: "monthly"
|
||||||
|
```
|
||||||
|
|
||||||
This layer just moves bytes around. Zero business logic. Want me to detail the validation layer next?
|
This layer just moves bytes around. Zero business logic. Want me to detail the validation layer next?
|
||||||
Reference in New Issue
Block a user