Update financial_docs/trading_edges.md
This commit is contained in:
@@ -1,196 +1,543 @@
|
||||
# Real Trading Edges:
|
||||
# WMR Fix Trading: Professional Implementation Guide
|
||||
## Complete System Framework & Operation Manual
|
||||
|
||||
## Where The Money Actually Is
|
||||
### 0. Document Control
|
||||
|
||||
### The Real Edge Hierarchy
|
||||
|
||||
1. Crypto Perpetuals (The Perfect Storm)
|
||||
- Unmatched Edge: Retail Psychology
|
||||
* Mass liquidation cascades = predictable moves
|
||||
* Funding rate extremes = free money
|
||||
* Weekend patterns = exploitable gaps
|
||||
* Exchange mechanics = guaranteed inefficiencies
|
||||
|
||||
- Why It Works:
|
||||
* Too many leveraged retail traders
|
||||
* Predictable mass liquidations
|
||||
* Exchange incentives create patterns
|
||||
* No circuit breakers or limits
|
||||
* Pure technical trading
|
||||
|
||||
- The Mechanics:
|
||||
```
|
||||
Retail Overleverages →
|
||||
Price Hits Key Level →
|
||||
Liquidation Cascade →
|
||||
Price Overshoots →
|
||||
Mean Reversion
|
||||
Version: 2.0
|
||||
Last Updated: 2024-10-26
|
||||
Status: Production Ready
|
||||
Review Cycle: Bi-weekly
|
||||
```
|
||||
|
||||
2. Options Premium Harvesting
|
||||
- Real Edge: Human Fear/Greed
|
||||
* Retail consistently overpays for protection
|
||||
* Fear spikes = premium opportunity
|
||||
* Weekly patterns = predictable decay
|
||||
* Volatility surface inefficiencies
|
||||
### I. Strategy Foundation
|
||||
|
||||
- Exploitable Patterns:
|
||||
* VIX spike mean reversion
|
||||
* Friday afternoon decay
|
||||
* Monday morning vol patterns
|
||||
* Earnings premium collapse
|
||||
|
||||
3. Forex Major Pairs
|
||||
- Legitimate Edges:
|
||||
* Asian session liquidity gaps
|
||||
* News overreaction patterns
|
||||
* Bank fixing times
|
||||
* Month-end flows
|
||||
* Carry trade unwinds
|
||||
|
||||
4. Retail Crypto Spot
|
||||
- Pure Psychology Trading:
|
||||
* Exchange listing pumps
|
||||
* Influencer manipulation cycles
|
||||
* New narrative waves
|
||||
* FOMO/FUD patterns
|
||||
|
||||
### Where The Edge Really Comes From
|
||||
|
||||
1. Mass Psychology
|
||||
- Fear spikes
|
||||
- Greed climaxes
|
||||
- Liquidation cascades
|
||||
- Narrative shifts
|
||||
|
||||
2. Market Structure
|
||||
- Exchange incentives
|
||||
- Liquidation mechanisms
|
||||
- Option expiry patterns
|
||||
- Futures basis
|
||||
|
||||
3. Technical Forces
|
||||
- Forced selling
|
||||
- Required buying
|
||||
- Delta hedging
|
||||
- Risk rebalancing
|
||||
|
||||
### The Truth About Implementation
|
||||
|
||||
1. Required Tools:
|
||||
- Real-time data feeds
|
||||
- Exchange APIs
|
||||
- Position tracking
|
||||
- Risk calculation
|
||||
- Pattern detection
|
||||
|
||||
2. Critical Patterns:
|
||||
- Liquidation levels
|
||||
- Funding extremes
|
||||
- Volume spikes
|
||||
- Order flow shifts
|
||||
|
||||
3. Real Risk Management:
|
||||
1. Core Strategy Elements
|
||||
```
|
||||
Position Size =
|
||||
(Account Risk % × Account Value) ÷
|
||||
(Entry Price - Stop Loss) ×
|
||||
Current Volatility Adjustment
|
||||
Trading Focus:
|
||||
├── Instrument: Major FX Pairs
|
||||
├── Primary: EUR/USD, GBP/USD
|
||||
├── Secondary: USD/JPY
|
||||
└── Conditional: EUR/GBP
|
||||
|
||||
Time Windows:
|
||||
├── Preparation: 11:30-11:53 ET
|
||||
├── Entry Window: 11:54-12:00 ET
|
||||
├── Management: 12:00-12:07 ET
|
||||
└── Analysis: 12:07-12:30 ET
|
||||
|
||||
Edge Definition:
|
||||
├── Institutional Flow Patterns
|
||||
├── Predictable Volume Spikes
|
||||
├── Order Flow Imbalances
|
||||
└── Price Action Continuation
|
||||
```
|
||||
|
||||
### Actual Edge Exploitation
|
||||
|
||||
1. Crypto Perpetuals Strategy:
|
||||
- Track funding rates across exchanges
|
||||
- Monitor liquidation levels
|
||||
- Watch for volume climax
|
||||
- Trade the mean reversion
|
||||
|
||||
2. Options Strategy:
|
||||
- Track VIX term structure
|
||||
- Monitor put/call ratios
|
||||
- Watch premium decay
|
||||
- Exploit fear spikes
|
||||
|
||||
3. Forex Approach:
|
||||
- Focus on liquidity gaps
|
||||
- Trade news overreactions
|
||||
- Exploit fixing times
|
||||
- Monitor carry unwinding
|
||||
|
||||
### The Real Money Flow
|
||||
2. Required Infrastructure
|
||||
```
|
||||
Retail Fear/Greed →
|
||||
Predictable Actions →
|
||||
Price Movement →
|
||||
Technical Reaction →
|
||||
Pattern Completion
|
||||
Hardware Requirements:
|
||||
├── Processing: Multi-Core CPU (i7/Ryzen 7 minimum)
|
||||
├── Memory: 32GB RAM recommended
|
||||
├── Storage: NVMe SSD
|
||||
├── Network: Dual ISP with auto-failover
|
||||
└── Power: UPS backup system
|
||||
|
||||
Software Stack:
|
||||
├── NinjaTrader 8 (latest version)
|
||||
├── Time sync service
|
||||
├── Network monitoring
|
||||
├── Backup execution system
|
||||
└── Performance tracking suite
|
||||
```
|
||||
|
||||
### Implementation Reality
|
||||
### II. Pre-Trading Setup
|
||||
|
||||
1. Entry Triggers
|
||||
- Volume spike confirmation
|
||||
- Price action validation
|
||||
- Pattern recognition
|
||||
- Risk level check
|
||||
1. Daily System Preparation
|
||||
```
|
||||
System Checklist (11:30 ET):
|
||||
├── NinjaTrader Connection Status
|
||||
│ ├── Data feed verification
|
||||
│ ├── Order routing test
|
||||
│ └── Time synchronization check
|
||||
│
|
||||
├── Market Conditions
|
||||
│ ├── News impact assessment
|
||||
│ ├── Volatility measurement
|
||||
│ └── Spread baseline check
|
||||
│
|
||||
├── Risk Parameters
|
||||
│ ├── Position size calculation
|
||||
│ ├── Stop level determination
|
||||
│ └── Target level setting
|
||||
│
|
||||
└── Execution Templates
|
||||
├── Entry orders setup
|
||||
├── Exit orders preparation
|
||||
└── Emergency procedures review
|
||||
```
|
||||
|
||||
2. Position Sizing
|
||||
- Volatility-based
|
||||
- Account risk-adjusted
|
||||
- Pattern probability weighted
|
||||
- Correlation considered
|
||||
|
||||
3. Exit Rules
|
||||
- Technical targets
|
||||
- Time-based stops
|
||||
- Pattern breakdown
|
||||
- Profit scaling
|
||||
|
||||
### Essential Pattern Recognition
|
||||
2. Market Analysis Framework
|
||||
```python
|
||||
# Real Edge Detection
|
||||
def find_liquidation_levels(data):
|
||||
# Find price levels with high leverage
|
||||
# Track open interest changes
|
||||
# Monitor funding rates
|
||||
# Calculate probable cascade points
|
||||
pass
|
||||
|
||||
def detect_retail_excess(data):
|
||||
# Monitor social sentiment
|
||||
# Track funding rates
|
||||
# Analyze trade size
|
||||
# Calculate retail leverage
|
||||
pass
|
||||
class PreFixAnalysis:
|
||||
def analyze_conditions(self):
|
||||
return {
|
||||
'volume_profile': {
|
||||
'current_volume': self.get_current_volume(),
|
||||
'average_volume': self.calculate_avg_volume(),
|
||||
'threshold': 1.5 # Volume must be >1.5x average
|
||||
},
|
||||
'flow_analysis': {
|
||||
'institutional_activity': self.detect_large_orders(),
|
||||
'order_imbalance': self.calculate_imbalance(),
|
||||
'threshold': 2.0 # Order imbalance significance
|
||||
},
|
||||
'technical_setup': {
|
||||
'trend_direction': self.determine_trend(),
|
||||
'key_levels': self.identify_levels(),
|
||||
'momentum': self.calculate_momentum()
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Risk Reality
|
||||
### III. Trading Execution Framework
|
||||
|
||||
1. Pattern Failure Risk
|
||||
- False signal identification
|
||||
- Changed market conditions
|
||||
- Correlation breakdown
|
||||
- Volume inadequacy
|
||||
1. Entry Strategy Implementation
|
||||
```csharp
|
||||
public class FixEntryManager
|
||||
{
|
||||
private readonly struct EntryPhase
|
||||
{
|
||||
public DateTime Time { get; }
|
||||
public double SizePercent { get; }
|
||||
public double AllowedSlippage { get; }
|
||||
public int RetryAttempts { get; }
|
||||
}
|
||||
|
||||
2. Implementation Risk
|
||||
- Execution slippage
|
||||
- System failure
|
||||
- Data delays
|
||||
- Position tracking
|
||||
private readonly EntryPhase[] entryPhases = new[]
|
||||
{
|
||||
new EntryPhase
|
||||
{
|
||||
Time = DateTime.Parse("11:54:00"),
|
||||
SizePercent = 0.4,
|
||||
AllowedSlippage = 0.5,
|
||||
RetryAttempts = 2
|
||||
},
|
||||
new EntryPhase
|
||||
{
|
||||
Time = DateTime.Parse("11:56:00"),
|
||||
SizePercent = 0.3,
|
||||
AllowedSlippage = 0.7,
|
||||
RetryAttempts = 2
|
||||
},
|
||||
new EntryPhase
|
||||
{
|
||||
Time = DateTime.Parse("11:58:00"),
|
||||
SizePercent = 0.3,
|
||||
AllowedSlippage = 1.0,
|
||||
RetryAttempts = 1
|
||||
}
|
||||
};
|
||||
}
|
||||
```
|
||||
|
||||
3. Market Risk
|
||||
- Black swan events
|
||||
- Regulatory changes
|
||||
- Market structure shifts
|
||||
- Liquidity crises
|
||||
2. Position Management
|
||||
```csharp
|
||||
public class PositionManager
|
||||
{
|
||||
private readonly struct ExitLevel
|
||||
{
|
||||
public double Percentage { get; }
|
||||
public double Target { get; }
|
||||
public DateTime MaxTime { get; }
|
||||
}
|
||||
|
||||
### The Bottom Line
|
||||
private readonly ExitLevel[] exitLevels = new[]
|
||||
{
|
||||
new ExitLevel
|
||||
{
|
||||
Percentage = 0.4,
|
||||
Target = 12, // pips
|
||||
MaxTime = DateTime.Parse("12:02:30")
|
||||
},
|
||||
new ExitLevel
|
||||
{
|
||||
Percentage = 0.3,
|
||||
Target = 20,
|
||||
MaxTime = DateTime.Parse("12:04:00")
|
||||
},
|
||||
new ExitLevel
|
||||
{
|
||||
Percentage = 0.3,
|
||||
Target = 30,
|
||||
MaxTime = DateTime.Parse("12:06:30")
|
||||
}
|
||||
};
|
||||
}
|
||||
```
|
||||
|
||||
Success requires:
|
||||
1. Understanding real market mechanics
|
||||
2. Exploiting predictable behavior
|
||||
3. Managing risk ruthlessly
|
||||
4. Maintaining system robustness
|
||||
### IV. Risk Management Framework
|
||||
|
||||
Remember: The edge exists because of human nature and market structure. These don't change - but your ability to exploit them can.
|
||||
1. Pre-Trade Risk Controls
|
||||
```csharp
|
||||
public class RiskManager
|
||||
{
|
||||
private struct RiskParameters
|
||||
{
|
||||
public double MaxAccountRisk = 0.02;
|
||||
public double MaxDailyDrawdown = 0.04;
|
||||
public double MaxPositionSize = 0.1;
|
||||
public int MaxConcurrentPairs = 2;
|
||||
public double MinRewardRatio = 1.5;
|
||||
}
|
||||
|
||||
private bool ValidateTradeRisk(TradeSetup setup)
|
||||
{
|
||||
return setup.AccountRisk <= RiskParameters.MaxAccountRisk &&
|
||||
setup.PositionSize <= RiskParameters.MaxPositionSize &&
|
||||
setup.RewardRatio >= RiskParameters.MinRewardRatio;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
2. Active Risk Management
|
||||
```python
|
||||
class ActiveRiskManager:
|
||||
def manage_position_risk(self):
|
||||
return {
|
||||
'stop_management': {
|
||||
'initial_stop': -12,
|
||||
'breakeven': +8,
|
||||
'trailing_stop': self.calculate_trailing_stop(),
|
||||
'time_based_stop': self.time_stop_level()
|
||||
},
|
||||
'position_scaling': {
|
||||
'first_scale': self.manage_first_scale(),
|
||||
'second_scale': self.manage_second_scale(),
|
||||
'final_exit': self.manage_final_exit()
|
||||
},
|
||||
'emergency_procedures': {
|
||||
'spread_violation': self.check_spread_limits(),
|
||||
'slippage_control': self.monitor_slippage(),
|
||||
'technical_issues': self.system_health_check()
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### V. Performance Monitoring
|
||||
|
||||
1. Real-Time Monitoring
|
||||
```python
|
||||
class PerformanceMonitor:
|
||||
def track_execution(self):
|
||||
metrics = {
|
||||
'execution_quality': {
|
||||
'fill_price': self.analyze_fills(),
|
||||
'slippage': self.measure_slippage(),
|
||||
'timing_accuracy': self.check_timing()
|
||||
},
|
||||
'position_tracking': {
|
||||
'current_risk': self.calculate_risk(),
|
||||
'profit_loss': self.track_pnl(),
|
||||
'expected_vs_actual': self.compare_performance()
|
||||
},
|
||||
'system_health': {
|
||||
'latency': self.measure_latency(),
|
||||
'api_performance': self.check_api_status(),
|
||||
'error_rate': self.track_errors()
|
||||
}
|
||||
}
|
||||
return self.analyze_metrics(metrics)
|
||||
```
|
||||
|
||||
2. Post-Trade Analysis
|
||||
```python
|
||||
class TradeAnalyzer:
|
||||
def analyze_performance(self):
|
||||
return {
|
||||
'trade_metrics': {
|
||||
'entry_efficiency': self.analyze_entries(),
|
||||
'exit_efficiency': self.analyze_exits(),
|
||||
'risk_reward_achieved': self.calculate_rr(),
|
||||
'expectancy': self.calculate_expectancy()
|
||||
},
|
||||
'pattern_analysis': {
|
||||
'setup_quality': self.evaluate_setup(),
|
||||
'execution_quality': self.evaluate_execution(),
|
||||
'management_quality': self.evaluate_management()
|
||||
},
|
||||
'improvement_areas': {
|
||||
'entry_timing': self.identify_entry_improvements(),
|
||||
'exit_efficiency': self.identify_exit_improvements(),
|
||||
'risk_management': self.identify_risk_improvements()
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### VI. Continuous Improvement
|
||||
|
||||
1. Weekly Review Process
|
||||
```
|
||||
Performance Review:
|
||||
├── Trade Journal Analysis
|
||||
├── Execution Quality Review
|
||||
├── Risk Management Assessment
|
||||
└── System Performance Evaluation
|
||||
|
||||
Improvement Areas:
|
||||
├── Entry Timing Optimization
|
||||
├── Exit Efficiency Enhancement
|
||||
├── Risk Control Refinement
|
||||
└── System Reliability Upgrade
|
||||
```
|
||||
|
||||
2. Monthly Optimization
|
||||
```
|
||||
Strategy Refinement:
|
||||
├── Pattern Recognition Update
|
||||
├── Risk Parameter Adjustment
|
||||
├── Execution Logic Optimization
|
||||
└── Performance Metric Review
|
||||
|
||||
System Enhancement:
|
||||
├── Technology Stack Update
|
||||
├── Connection Optimization
|
||||
├── Error Rate Reduction
|
||||
└── Latency Minimization
|
||||
```
|
||||
|
||||
Remember:
|
||||
1. Edge preservation is paramount
|
||||
2. System reliability enables edge exploitation
|
||||
3. Risk management ensures longevity
|
||||
4. Continuous improvement maintains edge
|
||||
5. Documentation supports consistency
|
||||
|
||||
Would you like me to:
|
||||
1. Add specific code implementations?
|
||||
2. Develop detailed testing procedures?
|
||||
3. Create comprehensive checklists?
|
||||
4. Build additional monitoring tools?
|
||||
|
||||
# WMR Fix Trade Example: EUR/USD
|
||||
## Complete Trade Walkthrough with Real-Time Decision Making
|
||||
|
||||
### I. Pre-Trade Analysis (11:30-11:53 ET)
|
||||
|
||||
1. Market Context
|
||||
```
|
||||
Date: October 26, 2024
|
||||
Pair: EUR/USD
|
||||
Current Price: 1.0650
|
||||
Daily Range: 1.0625-1.0675
|
||||
Average Spread: 0.5 pips
|
||||
Current Volatility: Medium
|
||||
|
||||
Account Status:
|
||||
├── Balance: $100,000
|
||||
├── Daily P&L: +$1,200
|
||||
├── Risk Per Trade: $2,000 (2%)
|
||||
└── Available Pairs: EUR/USD, GBP/USD
|
||||
```
|
||||
|
||||
2. Initial Analysis (11:45 ET)
|
||||
```
|
||||
Volume Profile:
|
||||
├── Current Volume: 125% of normal
|
||||
├── Large Orders: Detected at 1.0640
|
||||
├── Order Flow: Buy-side imbalance
|
||||
└── Institutional Activity: Increasing
|
||||
|
||||
Technical Setup:
|
||||
├── Trend: Bullish intraday
|
||||
├── Key Levels:
|
||||
│ ├── Support: 1.0640
|
||||
│ └── Resistance: 1.0665
|
||||
├── Momentum: Positive
|
||||
└── Order Book: Buy-side heavy
|
||||
```
|
||||
|
||||
### II. Trade Setup (11:50-11:53 ET)
|
||||
|
||||
1. Position Sizing Calculation
|
||||
```
|
||||
Risk Parameters:
|
||||
├── Account Risk: $2,000 (2%)
|
||||
├── Stop Loss: 12 pips (1.0638)
|
||||
├── Position Value Per Pip: $10
|
||||
└── Maximum Position: 16.6 lots
|
||||
|
||||
Position Plan:
|
||||
├── Total Size: 12 lots
|
||||
│ ├── Entry 1: 5 lots (40%)
|
||||
│ ├── Entry 2: 4 lots (33%)
|
||||
│ └── Entry 3: 3 lots (27%)
|
||||
```
|
||||
|
||||
2. Entry Plan
|
||||
```
|
||||
Target Entry Levels:
|
||||
├── Entry 1: 1.0650 ±1 pip (11:54:00)
|
||||
├── Entry 2: 1.0652 ±1 pip (11:56:00)
|
||||
└── Entry 3: 1.0654 ±1 pip (11:58:00)
|
||||
|
||||
Profit Targets:
|
||||
├── Target 1: 1.0662 (12 pips)
|
||||
├── Target 2: 1.0670 (20 pips)
|
||||
└── Target 3: 1.0680 (30 pips)
|
||||
```
|
||||
|
||||
### III. Trade Execution
|
||||
|
||||
1. First Entry (11:54:00 ET)
|
||||
```
|
||||
Market Conditions:
|
||||
├── Price: 1.0650
|
||||
├── Spread: 0.6 pips
|
||||
├── Volume: Surge detected
|
||||
└── Flow: Strong buy imbalance
|
||||
|
||||
Execution:
|
||||
├── Order Type: Market
|
||||
├── Size: 5 lots
|
||||
├── Fill Price: 1.0651
|
||||
├── Slippage: 0.1 pips
|
||||
└── Initial Stop: 1.0639
|
||||
```
|
||||
|
||||
2. Second Entry (11:56:00 ET)
|
||||
```
|
||||
Updated Conditions:
|
||||
├── Price moved to: 1.0654
|
||||
├── Volume: 150% of normal
|
||||
├── Pattern: Confirming bullish
|
||||
└── Flow: Maintained buy bias
|
||||
|
||||
Execution:
|
||||
├── Order Type: Market
|
||||
├── Size: 4 lots
|
||||
├── Fill Price: 1.0654
|
||||
├── Slippage: 0.0 pips
|
||||
└── Average Entry: 1.0652
|
||||
```
|
||||
|
||||
3. Final Entry (11:58:00 ET)
|
||||
```
|
||||
Market Status:
|
||||
├── Price: 1.0657
|
||||
├── Volume: 175% of normal
|
||||
├── Pattern: Strong continuation
|
||||
└── Risk: Within parameters
|
||||
|
||||
Execution:
|
||||
├── Order Type: Market
|
||||
├── Size: 3 lots
|
||||
├── Fill Price: 1.0657
|
||||
├── Slippage: 0.2 pips
|
||||
└── Final Average Entry: 1.0654
|
||||
```
|
||||
|
||||
### IV. Position Management
|
||||
|
||||
1. Initial Management (12:00-12:02 ET)
|
||||
```
|
||||
Position Status:
|
||||
├── Total Size: 12 lots
|
||||
├── Average Entry: 1.0654
|
||||
├── Current Price: 1.0663
|
||||
├── Unrealized P&L: +$1,080
|
||||
└── Risk Status: Reduced to breakeven
|
||||
|
||||
Stop Adjustment:
|
||||
├── Initial: 1.0639
|
||||
├── Moved to: 1.0654 (breakeven)
|
||||
└── Reason: Price exceeded +8 pips
|
||||
```
|
||||
|
||||
2. First Scale Out (12:02:30 ET)
|
||||
```
|
||||
Market Conditions:
|
||||
├── Price: 1.0666
|
||||
├── Volume: Maintaining
|
||||
├── Flow: Still bullish
|
||||
└── Target 1: Reached
|
||||
|
||||
Execution:
|
||||
├── Size: 5 lots (40%)
|
||||
├── Exit Price: 1.0666
|
||||
├── P&L: +$600
|
||||
└── Remaining: 7 lots
|
||||
```
|
||||
|
||||
3. Second Scale Out (12:04:15 ET)
|
||||
```
|
||||
Position Update:
|
||||
├── Price: 1.0672
|
||||
├── Market: Strong momentum
|
||||
├── Target 2: Reached
|
||||
└── Risk: Locked in profit
|
||||
|
||||
Execution:
|
||||
├── Size: 4 lots (33%)
|
||||
├── Exit Price: 1.0672
|
||||
├── P&L: +$720
|
||||
└── Remaining: 3 lots
|
||||
```
|
||||
|
||||
4. Final Exit (12:06:45 ET)
|
||||
```
|
||||
Final Conditions:
|
||||
├── Price: 1.0675
|
||||
├── Time: Approaching fix end
|
||||
├── Flow: Starting to slow
|
||||
└── Decision: Time-based exit
|
||||
|
||||
Execution:
|
||||
├── Size: 3 lots (remaining)
|
||||
├── Exit Price: 1.0675
|
||||
├── Final P&L: +$630
|
||||
└── Total Trade P&L: +$1,950
|
||||
```
|
||||
|
||||
### V. Trade Summary
|
||||
|
||||
1. Performance Metrics
|
||||
```
|
||||
Entry Efficiency:
|
||||
├── Average Fill Quality: 98%
|
||||
├── Slippage Cost: $30
|
||||
├── Spread Cost: $72
|
||||
└── Timing Accuracy: 92%
|
||||
|
||||
Exit Efficiency:
|
||||
├── Scale Out Accuracy: 95%
|
||||
├── Target Achievement: 2/3
|
||||
├── Time Management: Optimal
|
||||
└── Overall Execution: Strong
|
||||
|
||||
P&L Breakdown:
|
||||
├── Gross Profit: $1,950
|
||||
├── Transaction Costs: $102
|
||||
├── Net Profit: $1,848
|
||||
└── R/R Achieved: 1.85
|
||||
```
|
||||
|
||||
2. Learning Points
|
||||
```
|
||||
Strengths:
|
||||
├── Entry timing accuracy
|
||||
├── Scale-out execution
|
||||
├── Risk management
|
||||
└── Pattern recognition
|
||||
|
||||
Improvements:
|
||||
├── First entry could be more aggressive
|
||||
├── Second scale timing could be better
|
||||
├── Final exit could wait longer
|
||||
└── Stop adjustment could be tighter
|
||||
```
|
||||
|
||||
Would you like me to:
|
||||
1. Add more detail to any phase?
|
||||
2. Create alternative scenario analyses?
|
||||
3. Develop specific execution improvements?
|
||||
4. Build a template for future trades?
|
||||
Reference in New Issue
Block a user