Update projects/forex_algo_trading.md

This commit is contained in:
2024-02-18 13:13:55 +00:00
parent a6e869fa6a
commit f3a23fcd57

View File

@@ -51,6 +51,71 @@ swing_trading_project/
- Use `oandapyV20` in `data_fetcher.py` to request historical EUR/USD data. Consider H4 or D granularity.
- Save the data to `data/` as CSV.
```python
import csv
import os
from oandapyV20 import API # The Oanda API wrapper
import oandapyV20.endpoints.instruments as instruments
from datetime import datetime
import pandas as pd
# Configuration
ACCOUNT_ID = 'your_account_id_here'
ACCESS_TOKEN = 'your_access_token_here'
INSTRUMENT = 'EUR_USD'
GRANULARITY = 'H4' # 4-hour candles
OUTPUT_FILENAME = 'eur_usd_data.csv'
# Directory for saving the data
DATA_DIR = 'data'
if not os.path.exists(DATA_DIR):
os.makedirs(DATA_DIR)
def fetch_data(account_id, access_token, instrument, granularity):
"""Fetch historical forex data for a specified instrument and granularity."""
client = API(access_token=access_token)
params = {
"granularity": granularity,
"count": 5000 # Maximum data points to fetch in one request
}
# Create a data request
data_request = instruments.InstrumentsCandles(instrument=instrument, params=params)
data = client.request(data_request)
return data['candles']
def save_to_csv(data, filename):
"""Save fetched forex data to a CSV file."""
filepath = os.path.join(DATA_DIR, filename)
with open(filepath, mode='w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['Time', 'Open', 'High', 'Low', 'Close', 'Volume'])
for candle in data:
writer.writerow([
candle['time'],
candle['mid']['o'],
candle['mid']['h'],
candle['mid']['l'],
candle['mid']['c'],
candle['volume']
])
def main():
"""Main function to fetch and save EUR/USD data."""
print("Fetching data...")
data = fetch_data(ACCOUNT_ID, ACCESS_TOKEN, INSTRUMENT, GRANULARITY)
print(f"Fetched {len(data)} data points.")
print("Saving to CSV...")
save_to_csv(data, OUTPUT_FILENAME)
print(f"Data saved to {os.path.join(DATA_DIR, OUTPUT_FILENAME)}")
if __name__ == '__main__':
main()
```
## Step 4: Exploratory Data Analysis
- Create a new Jupyter notebook in `notebooks/`.