For **statistics and data science visuals** in hobby projects (e.g., distributions, regression plots, time series, clustering), here’s the optimal workflow balancing **quality, performance, and ease of use**: --- ### **1. Recommended Tools by Task** #### **A. Static Visuals (PNG/SVG)** | Task | Best Tool (Python) | Best Tool (R) | Output Format | |-----------------------|--------------------------|------------------------|---------------| | Distributions | Seaborn (`histplot`, `kdeplot`) | ggplot2 (`geom_histogram`, `geom_density`) | PNG (if dense data) / SVG (if simple) | | Scatter/Regression | Seaborn (`regplot`, `lmplot`) | ggplot2 (`geom_smooth`, `geom_point`) | SVG (for interactivity later) | | Time Series | Matplotlib (`plot_date`) + Seaborn | ggplot2 (`geom_line`) | PNG (long series) | | Heatmaps/Correlation | Seaborn (`heatmap`) | ggplot2 (`geom_tile`) | PNG (large matrices) | | Box/Violin Plots | Seaborn (`boxplot`, `violinplot`) | ggplot2 (`geom_boxplot`) | SVG | #### **B. Interactive Visuals (Embeddable in Hugo)** | Task | Best Tool | Output Format | |-----------------------|--------------------------|------------------------| | Exploratory hover plots | Plotly Express (Python/R) | HTML (embed as `