For creating and manipulating complex data visualizations, `Matplotlib` is an indispensable Python library. It's widely used for generating plots, histograms, bar charts, scatterplots, and more, offering extensive customization options to make the visualizations as informative and appealing as possible. Below is a concise reference guide for common use cases with `Matplotlib`, formatted in Markdown syntax: # `Matplotlib` Reference Guide ## Installation ``` pip install matplotlib ``` ## Basic Plotting ### Importing Matplotlib ```python import matplotlib.pyplot as plt ``` ### Creating a Simple Plot ```python # Prepare some data x = [1, 2, 3, 4] y = [10, 20, 25, 30] # Plot data plt.plot(x, y) # Show plot plt.show() ``` ### Creating a Scatter Plot ```python # Scatter plot plt.scatter(x, y) # Show plot plt.show() ``` ### Multiple Plots on Same Axes ```python # Second set of data x2 = [1, 2, 3, 4] y2 = [30, 25, 20, 15] # Plot data plt.plot(x, y, label='First Line') plt.plot(x2, y2, label='Second Line') # Adding a legend plt.legend() # Show plot plt.show() ``` ## Customizing Plots ### Titles, Labels, and Legends ```python plt.plot(x, y) # Title plt.title('My First Plot') # Axis labels plt.xlabel('X Axis Label') plt.ylabel('Y Axis Label') # Show plot plt.show() ``` ### Line Styles and Markers ```python plt.plot(x, y, color='red', linestyle='--', marker='o', label='Data Points') # Show plot plt.show() ``` ### Setting Axis Ranges ```python plt.plot(x, y) # Setting the range for the axes plt.xlim(0, 5) plt.ylim(5, 35) # Show plot plt.show() ``` ### Adding Grid Lines ```python plt.plot(x, y) # Adding grid plt.grid(True) # Show plot plt.show() ``` ## Other Types of Plots ### Histograms ```python data = [1, 2, 2, 3, 3, 3, 4, 4, 5] # Create histogram plt.hist(data, bins=5, alpha=0.5, color='blue') # Show plot plt.show() ``` ### Bar Charts ```python categories = ['A', 'B', 'C', 'D'] values = [10, 20, 15, 5] # Create bar chart plt.bar(categories, values) # Show plot plt.show() ``` ### Pie Charts ```python slices = [7, 2, 2, 13] categories = ['A', 'B', 'C', 'D'] # Create pie chart plt.pie(slices, labels=categories, autopct='%1.1f%%') # Show plot plt.show() ``` ## Saving Figures ```python plt.plot(x, y) # Save the figure plt.savefig('plot.png') # Show plot plt.show() ``` `Matplotlib` is a powerful library for creating static, interactive, and animated visualizations in Python. This guide covers the basics of generating and customizing plots, but Matplotlib's functionality is vast, supporting a wide range of plot types and customization options to suit various data visualization needs.