# **The Complete Technical Guide to CUE (Configure-Unify-Execute)** *A structured, practical, and comprehensive introduction to CUE—covering core concepts, real-world applications, and best practices.* --- ## **1. Introduction to CUE** ### **What is CUE?** CUE (**Configure-Unify-Execute**) is an **open-source data constraint language** developed at Google. It is designed for: - **Configuration management** (Kubernetes, Terraform, CI/CD) - **Data validation** (API schemas, input sanitization) - **Code generation** (Dockerfiles, Kubernetes manifests, SQL schemas) - **Policy enforcement** (security rules, compliance checks) Unlike YAML/JSON, CUE merges **types, values, and constraints** into a single model, enabling **deterministic, reproducible configurations**. ### **Why CUE Over Alternatives?** | Tool | Strengths | Weaknesses vs. CUE | |--------------|-----------------------------|---------------------------------| | **YAML** | Human-readable, widely used | No validation, no logic, fragile | | **Jsonnet** | Templating, code reuse | Slower, no built-in validation | | **HCL** | Terraform integration | Less flexible for non-TF use | | **Pulumi** | Full programming model | Complex, runtime-dependent | | **CUE** | **Validation + unification** | Steeper initial learning curve | --- ## **2. Core Concepts** ### **The CUE Lattice** CUE’s power comes from its **lattice structure**, where: - **`_` (Top)**: Accepts any value (e.g., `string`, `int`, `{}`). - **`_|_` (Bottom)**: An invalid/conflicting value (error state). - **Unification (`&`)** combines constraints (like logical AND). - **Disjunction (`|`)** allows alternatives (like logical OR). **Example:** ```cue #Schema: { name: string & =~"^[A-Z][a-z]+$" // Must start with uppercase age: int & >0 & <120 // Age between 0 and 120 role?: "admin" | "user" // Optional role } valid: #Schema & { name: "Alice", age: 30 } // ✅ Valid invalid: #Schema & { name: "alice", age: 150 } // ❌ Fails (name, age) ``` --- ## **3. Getting Started** ### **Installation** ```bash # Install CUE brew install cue-lang/tap/cue # macOS sudo apt-get install cue # Debian/Ubuntu go install cuelang.org/go/cmd/cue@latest # Go users # Verify cue version ``` ### **Basic Workflow** 1. **Define schemas** (`.cue` files). 2. **Validate data** (`cue vet`). 3. **Export to JSON/YAML** (`cue export`). **Example:** ```cue // schema.cue #Person: { name: string age: int & >=18 } // data.json { "name": "Bob", "age": 25 } # Validate cue vet schema.cue data.json # ✅ Passes ``` --- ## **4. Real-World Use Cases** ### **Case 1: Kubernetes Configuration** **Problem**: YAML files are brittle and hard to validate. **Solution**: Define a reusable schema. ```cue // k8s.cue #Deployment: { apiVersion: "apps/v1" kind: "Deployment" metadata: name: string spec: { replicas: int & >=1 template: spec: containers: [{ name: string image: string & =~".+:.+" }] } } myapp: #Deployment & { metadata: name: "webapp" spec: replicas: 3 spec: template: spec: containers: [{ name: "app", image: "nginx:latest" }] } # Export to YAML cue export k8s.cue -e myapp --out yaml > deploy.yaml ``` ### **Case 2: Terraform Guardrails** **Problem**: Prevent invalid cloud configurations. **Solution**: Enforce AWS/GCP policies. ```cue #AWS: { region: "us-east-1" | "us-west-2" instanceType: "t2.micro" | "t3.medium" } my_vm: #AWS & { region: "us-east-1" instanceType: "t2.micro" # ✅ Valid } invalid_vm: #AWS & { region: "eu-west-1" # ❌ Fails (invalid region) } ``` ### **Case 3: CI/CD Pipeline-as-Code** **Problem**: YAML-based pipelines are hard to maintain. **Solution**: Define pipelines in CUE. ```cue #Pipeline: { steps: [...{ name: string cmd: string }] } my_pipeline: #Pipeline & { steps: [ { name: "build", cmd: "go build" }, { name: "test", cmd: "go test" }, ] } # Generate GitHub Actions YAML cue export pipeline.cue --out yaml > .github/workflows/ci.yml ``` --- ## **5. Debugging & Best Practices** ### **Debugging Unification Errors** - Use `cue eval -v` to trace unification steps. - Check for `_|_` (bottom) in output—indicates conflicts. ### **Best Practices** 1. **Modularize**: Split schemas into files (`schemas/`, `configs/`). 2. **Reuse**: Leverage CUE’s **import system** (`import "acme.com/schemas"`). 3. **Validate Early**: Run `cue vet` in CI/CD. --- ## **6. Advanced Topics** ### **Go + CUE Integration** Embed CUE in Go programs for dynamic validation: ```go package main import ( "cuelang.org/go/cue/cuecontext" "fmt" ) func main() { ctx := cuecontext.New() schema := ctx.CompileString(` #Person: { name: string age: int & >=18 }`) data := ctx.CompileString(`{ name: "Alice", age: 30 }`) unified := schema.Unify(data) if err := unified.Validate(); err != nil { fmt.Println("Validation failed:", err) } else { fmt.Println("Valid!") } } ``` ### **Generating Code** Convert CUE to: - **OpenAPI**: `cue export --out openapi` - **Go Structs**: `cue get go` - **SQL**: Use templates (`text/template`). --- ## **7. Learning Resources** - **Official Docs**: [cuelang.org](https://cuelang.org/) - **Playground**: [cuelang.org/play](https://cuelang.org/play) - **Community**: [CUE Slack](https://cuelang.slack.com/) --- ## **Conclusion** CUE replaces **ad-hoc YAML/JSON** with **structured, validated, and reusable** configurations. By mastering: 1. **Lattice logic** (unification, constraints), 2. **Real-world workflows** (K8s, Terraform, CI/CD), 3. **Tooling integration** (Go, OpenAPI), You can eliminate configuration errors and enforce policies **declaratively**. **Next Step**: Try the [CUE Tutorial](https://cuelang.org/docs/tutorials/) or experiment in the **playground**! 🚀 Here’s a **Mermaid.js diagram** that visually explains the CUE lattice (Top, Bottom, Unification, and Disjunction) in a way that’s both accurate and appealing for visual learners. You can embed this directly in your Gitea Markdown files (if Mermaid rendering is enabled): ```mermaid %% CUE Lattice Diagram graph TD A["⊤ (Top)"] --> B["Concrete Values"] A --> C["Constraints"] B --> D["Unification (&)"] C --> D D --> E["Valid Output"] D --> F["⊥ (Bottom, Invalid)"] B --> G["Disjunction (|)"] C --> G G --> H["Valid Alternative"] style A fill:#4CAF50,stroke:#388E3C style F fill:#F44336,stroke:#D32F2F style E fill:#2196F3,stroke:#1976D2 style H fill:#FF9800,stroke:#F57C00 %% Examples I["Example:\nname: string & =~'^[A-Z]'"] --> D J["Example:\nrole: 'admin' | 'user'"] --> G ``` --- ### **How to Use in Gitea**: 1. Ensure Mermaid is enabled in your Gitea instance (check with admins). 2. Paste the above code into a Markdown file (e.g., `README.md`). 3. It will render as an interactive diagram. --- ### **Diagram Explanation**: 1. **`⊤ (Top)`** - The root of all possible values (e.g., `string`, `int`, `{}`). - Branches into **concrete values** (like `"Alice"`) and **constraints** (like `>=18`). 2. **Unification (`&`)** - Merges constraints (like a strict AND gate). - Outputs either a **valid value** (if constraints are met) or **`⊥` (Bottom)** (if conflicts exist). 3. **Disjunction (`|`)** - Represents alternatives (like a flexible OR gate). - Outputs the **first valid alternative** (e.g., `"admin" | "user"`). 4. **`⊥ (Bottom)`** - The "error state" (e.g., `name: 42` when `string` is required). --- ### **Why This Works**: - **Visualizes the Lattice**: Shows how CUE narrows possibilities from `⊤` to valid outputs. - **Color-Coded**: Green (Top), Blue (Valid), Red (Error), Orange (Alternatives). - **Includes Examples**: Embedded real CUE snippets for clarity. --- ### **Alternate Version (Simpler)**: If you prefer a minimalistic view: ```mermaid graph LR T["⊤ (Any Value)"] -->|Unification (&)| U["Valid"] T -->|Conflict| B["⊥ (Invalid)"] T -->|Disjunction (|)| D["A | B | C"] ``` Let me know if you'd like to tweak the design (e.g., add more examples, change layouts)!