For data visualization in Python, `Seaborn` is a very useful library that builds on top of `Matplotlib`. It provides a high-level interface for drawing attractive and informative statistical graphics. Seaborn simplifies the process of creating complex visualizations from data in pandas DataFrames and arrays, integrating closely with the rest of the Python data science stack. Here's a concise reference guide for common use cases with `Seaborn`: # `Seaborn` Reference Guide ## Installation ``` pip install seaborn ``` ## Basic Usage ### Importing Seaborn ```python import seaborn as sns ``` ### Setting Aesthetics ```python # Set the aesthetic style of the plots sns.set_style("whitegrid") # Set the context for the plot (paper, notebook, talk, poster) sns.set_context("notebook") ``` ## Basic Plots ### Distribution Plots ```python import numpy as np # Load a dataset for example tips = sns.load_dataset("tips") # Histogram sns.histplot(data=tips, x="total_bill") # Kernel Density Estimate (KDE) plot sns.kdeplot(data=tips, x="total_bill") # Combining histogram and KDE sns.histplot(data=tips, x="total_bill", kde=True) ``` ### Categorical Plots ```python # Box plot sns.boxplot(x="day", y="total_bill", data=tips) # Violin plot sns.violinplot(x="day", y="total_bill", data=tips) # Swarm plot sns.swarmplot(x="day", y="total_bill", data=tips) ``` ### Scatter Plots ```python # Scatter plot with linear regression model fit sns.regplot(x="total_bill", y="tip", data=tips) # Scatter plot without regression model sns.scatterplot(x="total_bill", y="tip", data=tips) ``` ### Heatmaps ```python # Compute the correlation matrix corr = tips.corr() # Generate a heatmap sns.heatmap(corr, annot=True, fmt=".2f") ``` ### Pair Plots ```python # Pairwise relationships in a dataset sns.pairplot(tips) ``` ## Advanced Visualizations ### Facet Grids ```python # Create a facet grid g = sns.FacetGrid(tips, col="time", row="smoker") g.map(sns.scatterplot, "total_bill", "tip") ``` ### Joint Plots ```python # Draw a plot of two variables with bivariate and univariate graphs sns.jointplot(x="total_bill", y="tip", data=tips, kind="hex") ``` ## Customizing Plots ### Control Figure Aesthetics ```python # Customize the appearance sns.set(style="darkgrid", palette="pastel", font="Verdana", font_scale=1.1) ``` ### Saving Plots ```python import matplotlib.pyplot as plt plt.savefig("output.png") ``` `Seaborn` is particularly well-suited for exploratory data analysis (EDA), making it easy to identify patterns and relationships in data with its diverse plotting functions and beautiful default styles. This guide introduces the basics of creating various types of plots with Seaborn, but the library's capabilities are much broader, offering sophisticated options for customizing plots and analyzing complex datasets. Seaborn’s integration with pandas DataFrames enhances its usability in the data science workflow, making it an indispensable tool for data visualization and exploratory data analysis.