added data structures

This commit is contained in:
2024-05-19 17:33:38 -06:00
parent 93790bb928
commit 91ca252ed9

View File

@@ -0,0 +1,171 @@
Sure, here's a detailed look at common data structures in Python and the types of data they are typically used for:
### 1. Lists
- **Common Uses**:
- Ordered collections of items where the order matters.
- Storing items that can be changed, added, or removed.
- Examples: To-do lists, sequences of numbers, names of students, etc.
- **Typical Data**:
- Numbers: `[1, 2, 3, 4, 5]`
- Strings: `['apple', 'banana', 'cherry']`
- Mixed types: `[1, 'apple', 3.14, True]`
### 2. Dictionaries
- **Common Uses**:
- Mapping relationships between keys and values.
- Fast lookups of values based on unique keys.
- Examples: Phone books (name to number), configuration settings, JSON-like data structures.
- **Typical Data**:
- Strings to strings: `{'name': 'Alice', 'city': 'New York'}`
- Strings to numbers: `{'apples': 10, 'bananas': 5}`
- Mixed keys and values: `{1: 'one', 'two': 2, (3, 4): 'tuple_key'}`
### 3. Tuples
- **Common Uses**:
- Fixed collections of items where the order matters and should not change.
- Returning multiple values from a function.
- Storing related but different pieces of data.
- Examples: Coordinates (x, y, z), RGB color values, database records.
- **Typical Data**:
- Numbers: `(1, 2, 3)`
- Strings: `('red', 'green', 'blue')`
- Mixed types: `(1, 'apple', 3.14)`
### 4. Sets
- **Common Uses**:
- Collections of unique items.
- Membership tests, eliminating duplicates.
- Mathematical set operations like union, intersection, and difference.
- Examples: Unique user IDs, unique items in a collection, tags or keywords.
- **Typical Data**:
- Numbers: `{1, 2, 3, 4, 5}`
- Strings: `{'apple', 'banana', 'cherry'}`
- Mixed types (less common due to unhashable types): `{1, 'apple', (3, 4)}`
### 5. Strings
- **Common Uses**:
- Storing and manipulating text.
- Examples: Sentences, file paths, URLs, JSON data.
- **Typical Data**:
- Sentences: `"Hello, world!"`
- Paths: `"/usr/bin/python"`
- JSON data: `'{"name": "Alice", "age": 25}'`
### 6. Arrays (from the `array` module)
- **Common Uses**:
- Storing large amounts of numeric data efficiently.
- Arrays provide more efficient storage and faster access for numeric data.
- Examples: Numerical computations, scientific data.
- **Typical Data**:
- Numbers: `array.array('i', [1, 2, 3, 4, 5])`
### 7. Namedtuples (from the `collections` module)
- **Common Uses**:
- Creating simple classes to group related data.
- Similar to tuples, but with named fields for better readability.
- Examples: Representing rows from a database, simple data structures.
- **Typical Data**:
- Custom data structures:
```python
from collections import namedtuple
Point = namedtuple('Point', ['x', 'y'])
point = Point(1, 2)
```
### 8. Deques (from the `collections` module)
- **Common Uses**:
- Double-ended queues for fast appends and pops from both ends.
- Examples: Implementing queues, stacks, and other data structures.
- **Typical Data**:
- Items in a queue or stack:
```python
from collections import deque
my_deque = deque([1, 2, 3, 4, 5])
```
### 9. Defaultdict (from the `collections` module)
- **Common Uses**:
- Dictionaries with a default value for non-existent keys.
- Examples: Counting occurrences, grouping data.
- **Typical Data**:
- Dictionaries with default values:
```python
from collections import defaultdict
my_defaultdict = defaultdict(int)
my_defaultdict['a'] += 1
```
### Examples of Usage
#### List Example
```python
# List of student names
students = ['Alice', 'Bob', 'Charlie']
```
#### Dictionary Example
```python
# Dictionary of student grades
grades = {'Alice': 'A', 'Bob': 'B', 'Charlie': 'C'}
```
#### Tuple Example
```python
# Coordinates of a point
point = (10, 20)
```
#### Set Example
```python
# Set of unique fruits
unique_fruits = {'apple', 'banana', 'cherry'}
```
#### String Example
```python
# A sentence
sentence = "The quick brown fox jumps over the lazy dog."
```
#### Array Example
```python
import array
# Array of integers
int_array = array.array('i', [1, 2, 3, 4, 5])
```
#### Namedtuple Example
```python
from collections import namedtuple
# Named tuple for representing a point
Point = namedtuple('Point', ['x', 'y'])
point = Point(1, 2)
```
#### Deque Example
```python
from collections import deque
# Deque for queue operations
my_deque = deque(['a', 'b', 'c'])
my_deque.append('d')
my_deque.appendleft('z')
```
#### Defaultdict Example
```python
from collections import defaultdict
# Defaultdict for counting
count = defaultdict(int)
count['apple'] += 1
```
Understanding these common data structures and their typical use cases will help you choose the right one for your needs in different programming scenarios.