structure updates

This commit is contained in:
2024-05-01 12:28:44 -06:00
parent a689e58eea
commit aeba9bdb34
461 changed files with 0 additions and 0 deletions

114
tech_docs/python/Seaborn.md Normal file
View File

@@ -0,0 +1,114 @@
For data visualization in Python, `Seaborn` is a very useful library that builds on top of `Matplotlib`. It provides a high-level interface for drawing attractive and informative statistical graphics. Seaborn simplifies the process of creating complex visualizations from data in pandas DataFrames and arrays, integrating closely with the rest of the Python data science stack. Here's a concise reference guide for common use cases with `Seaborn`:
# `Seaborn` Reference Guide
## Installation
```
pip install seaborn
```
## Basic Usage
### Importing Seaborn
```python
import seaborn as sns
```
### Setting Aesthetics
```python
# Set the aesthetic style of the plots
sns.set_style("whitegrid")
# Set the context for the plot (paper, notebook, talk, poster)
sns.set_context("notebook")
```
## Basic Plots
### Distribution Plots
```python
import numpy as np
# Load a dataset for example
tips = sns.load_dataset("tips")
# Histogram
sns.histplot(data=tips, x="total_bill")
# Kernel Density Estimate (KDE) plot
sns.kdeplot(data=tips, x="total_bill")
# Combining histogram and KDE
sns.histplot(data=tips, x="total_bill", kde=True)
```
### Categorical Plots
```python
# Box plot
sns.boxplot(x="day", y="total_bill", data=tips)
# Violin plot
sns.violinplot(x="day", y="total_bill", data=tips)
# Swarm plot
sns.swarmplot(x="day", y="total_bill", data=tips)
```
### Scatter Plots
```python
# Scatter plot with linear regression model fit
sns.regplot(x="total_bill", y="tip", data=tips)
# Scatter plot without regression model
sns.scatterplot(x="total_bill", y="tip", data=tips)
```
### Heatmaps
```python
# Compute the correlation matrix
corr = tips.corr()
# Generate a heatmap
sns.heatmap(corr, annot=True, fmt=".2f")
```
### Pair Plots
```python
# Pairwise relationships in a dataset
sns.pairplot(tips)
```
## Advanced Visualizations
### Facet Grids
```python
# Create a facet grid
g = sns.FacetGrid(tips, col="time", row="smoker")
g.map(sns.scatterplot, "total_bill", "tip")
```
### Joint Plots
```python
# Draw a plot of two variables with bivariate and univariate graphs
sns.jointplot(x="total_bill", y="tip", data=tips, kind="hex")
```
## Customizing Plots
### Control Figure Aesthetics
```python
# Customize the appearance
sns.set(style="darkgrid", palette="pastel", font="Verdana", font_scale=1.1)
```
### Saving Plots
```python
import matplotlib.pyplot as plt
plt.savefig("output.png")
```
`Seaborn` is particularly well-suited for exploratory data analysis (EDA), making it easy to identify patterns and relationships in data with its diverse plotting functions and beautiful default styles. This guide introduces the basics of creating various types of plots with Seaborn, but the library's capabilities are much broader, offering sophisticated options for customizing plots and analyzing complex datasets.
Seaborns integration with pandas DataFrames enhances its usability in the data science workflow, making it an indispensable tool for data visualization and exploratory data analysis.