Update bounded_chaos.md
This commit is contained in:
107
bounded_chaos.md
107
bounded_chaos.md
@@ -1,3 +1,110 @@
|
||||
# **Q.E.D. Framework Specification**
|
||||
**Axiomatic Validity for Distributed Systems**
|
||||
*Version 0.1 — Minimal & Complete*
|
||||
|
||||
---
|
||||
|
||||
## **1. Validity Predicate**
|
||||
A system state `S` is **valid** if and only if:
|
||||
|
||||
```python
|
||||
is_valid(S):
|
||||
S.nodes in {0,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987} && # 𝓕-bound
|
||||
S.split in {1024//φ, 64//φ} && # φ-proportional
|
||||
|ΔS|/S ≤ 0.01 && # ε-stable
|
||||
sha256(S) == S.hash && # Cryptographic ID
|
||||
ed25519_verify(S.sig, S.hash) # Authenticity
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## **2. Constants**
|
||||
| Symbol | Value | Role |
|
||||
|--------|------------------------|-------------------------------|
|
||||
| `φ` | `(1 + √5)/2 ≈ 1.618` | Golden ratio (scaling factor) |
|
||||
| `𝓕` | `{0,1,2,3,5,...,987}` | Fibonacci sequence ≤ 1024 |
|
||||
| `ε` | `0.01` | Max Lyapunov divergence (1%) |
|
||||
|
||||
---
|
||||
|
||||
## **3. Cryptographic Primitives**
|
||||
| Function | Properties |
|
||||
|---------------------|--------------------------------|
|
||||
| `sha256(S)` | Collision-resistant hash |
|
||||
| `ed25519_verify()` | Existentially unforgeable |
|
||||
|
||||
---
|
||||
|
||||
## **4. Semantics**
|
||||
### **4.1. Fibonacci-Bounded Growth (`𝓕`)**
|
||||
- Node counts must belong to the Fibonacci sequence *below 1024*.
|
||||
- Ensures exponential scaling cannot runaway.
|
||||
|
||||
### **4.2. φ-Proportional Splits**
|
||||
- All divisions are golden-ratio scaled:
|
||||
- **IPv4**: `1024//φ ≈ 632`
|
||||
- **IPv6**: `64//φ ≈ 39`
|
||||
|
||||
### **4.3. ε-Stability (`|ΔS|/S ≤ 0.01`)**
|
||||
- No state transition can diverge by >1% from its predecessor.
|
||||
|
||||
### **4.4. Cryptographic Anchoring**
|
||||
- **Hashing**: `sha256(S)` ensures tamper-proof state identity.
|
||||
- **Signatures**: `ed25519_verify()` guarantees authorized transitions.
|
||||
|
||||
---
|
||||
|
||||
## **5. Termination Guarantees**
|
||||
Recursive operations **must halt** because:
|
||||
1. **Finite 𝓕-Set**: Max nodes = 987.
|
||||
2. **Prime-Checked Splits**: Divisions converge to fixed sizes.
|
||||
3. **Logarithmic Depth**: Max recursion depth = `⌈logφ(1024)⌉ = 11`.
|
||||
|
||||
---
|
||||
|
||||
## **6. Reference Implementation**
|
||||
```python
|
||||
def validate_state(S: State) -> bool:
|
||||
FIBONACCI_SET = {0,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987}
|
||||
GOLDEN_RATIO = (1 + 5**0.5) / 2
|
||||
|
||||
return all([
|
||||
S.nodes in FIBONACCI_SET,
|
||||
S.split in {1024 // GOLDEN_RATIO, 64 // GOLDEN_RATIO},
|
||||
abs(S.delta) / S.prev <= 0.01,
|
||||
hashlib.sha256(S.encode()).hexdigest() == S.hash,
|
||||
ed25519.verify(S.sig, S.hash.encode())
|
||||
])
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## **7. FAQ**
|
||||
**Q: Why Fibonacci bounds?**
|
||||
A: To enforce exponential-but-controlled growth (no unbounded sprawl).
|
||||
|
||||
**Q: Why φ for splits?**
|
||||
A: The golden ratio optimally balances asymmetry (proven in nature/algorithms).
|
||||
|
||||
**Q: Why SHA-256 + Ed25519?**
|
||||
A: Minimal sufficient cryptography for collision-resistance and unforgeability.
|
||||
|
||||
---
|
||||
|
||||
## **8. License**
|
||||
This spec is **public domain**. Use it to build:
|
||||
- Self-stabilizing networks
|
||||
- Chaos-resistant databases
|
||||
- Recursion-safe VMs
|
||||
|
||||
**Signed**: `Σ.sign(sha256(this_doc), priv_key)`
|
||||
|
||||
---
|
||||
|
||||
This is the **simplest possible** formalization of your framework. No fluff, just operational axioms.
|
||||
|
||||
---
|
||||
|
||||
# Bounded Chaos v0.0
|
||||
*Five rules, zero ceremony.*
|
||||
|
||||
|
||||
Reference in New Issue
Block a user