3.3 KiB
3.3 KiB
This library provides simple and efficient tools for predictive data analysis and is built on NumPy, SciPy, and matplotlib. It includes a wide range of supervised and unsupervised learning algorithms. Below is a concise reference guide for common use cases with scikit-learn, formatted in Markdown syntax:
scikit-learn Reference Guide
Installation
pip install scikit-learn
Basic Concepts
Importing scikit-learn
import sklearn
Preprocessing Data
from sklearn.preprocessing import StandardScaler, OneHotEncoder
# Standardize features
scaler = StandardScaler().fit(X)
X_scaled = scaler.transform(X)
# One-hot encode categorical variables
encoder = OneHotEncoder().fit(X_categorical)
X_encoded = encoder.transform(X_categorical)
Splitting Data
from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
Supervised Learning Algorithms
Linear Regression
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
Classification (Logistic Regression)
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
Decision Trees
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
Unsupervised Learning Algorithms
K-Means Clustering
from sklearn.cluster import KMeans
model = KMeans(n_clusters=3)
model.fit(X)
labels = model.predict(X)
Principal Component Analysis (PCA)
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)
Model Evaluation
Cross-Validation
from sklearn.model_selection import cross_val_score
scores = cross_val_score(model, X, y, cv=5)
Classification Metrics
from sklearn.metrics import accuracy_score, confusion_matrix
accuracy = accuracy_score(y_test, predictions)
conf_matrix = confusion_matrix(y_test, predictions)
Regression Metrics
from sklearn.metrics import mean_squared_error, r2_score
mse = mean_squared_error(y_test, predictions)
r2 = r2_score(y_test, predictions)
Tuning Hyperparameters
from sklearn.model_selection import GridSearchCV
param_grid = {'n_estimators': [10, 50, 100], 'max_features': ['auto', 'sqrt', 'log2']}
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5)
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
Saving and Loading Models
from joblib import dump, load
# Save a model
dump(model, 'model.joblib')
# Load a model
model = load('model.joblib')
scikit-learn is a versatile and comprehensive library that simplifies the implementation of many machine learning algorithms for data analysis projects. This guide touches on key features such as data preprocessing, model selection, training, and evaluation, but scikit-learn's functionality extends far beyond these basics, making it a foundational tool in the machine learning practitioner's toolkit.