Files
the_information_nexus/projects/ytmusic.md
2024-06-02 00:51:48 +00:00

10 KiB
Raw Blame History

To start with connecting to the YouTube Music API and downloading your playlist data using curl and storing this information in a sqlite3 database, we'll break this task into stages. We'll focus on using the YouTube Data API (which supports YouTube Music data) for authentication and data fetching.

Stage 1: Setup and API Authentication

1.1 Create a Project and Enable YouTube Data API

  1. Go to the Google Cloud Console.
  2. Create a new project.
  3. Enable the YouTube Data API v3 for your project.
  4. Create OAuth 2.0 credentials for your project and download the JSON file.

1.2 Using curl to Connect to the API

First, you'll need to authenticate with OAuth 2.0. Here is a simple way to get an access token:

  1. Request User Authorization

    Open a browser and navigate to the following URL, replacing YOUR_CLIENT_ID and YOUR_REDIRECT_URI with your OAuth 2.0 Client ID and Redirect URI:

    https://accounts.google.com/o/oauth2/v2/auth?scope=https://www.googleapis.com/auth/youtube.readonly&access_type=offline&include_granted_scopes=true&response_type=code&client_id=YOUR_CLIENT_ID&redirect_uri=YOUR_REDIRECT_URI
    

    After the user grants permission, Google will redirect to the specified redirect_uri with a code query parameter.

  2. Exchange Authorization Code for Access Token

    Use curl to exchange the authorization code for an access token:

    curl \
      -d "code=YOUR_AUTH_CODE" \
      -d "client_id=YOUR_CLIENT_ID" \
      -d "client_secret=YOUR_CLIENT_SECRET" \
      -d "redirect_uri=YOUR_REDIRECT_URI" \
      -d "grant_type=authorization_code" \
      https://oauth2.googleapis.com/token
    

    This will return a JSON response with the access_token and refresh_token.

1.3 Fetch Playlist Data

Now that you have the access token, you can fetch your playlists:

curl \
  -H "Authorization: Bearer YOUR_ACCESS_TOKEN" \
  "https://www.googleapis.com/youtube/v3/playlists?part=snippet&mine=true"

Stage 2: Store Data in SQLite

Let's create a Python script to fetch the data using the YouTube Data API and store it in a SQLite database.

2.1 Install Required Packages

pip install requests sqlite3

2.2 Create Python Script

Create a script fetch_and_store.py:

import requests
import sqlite3
import json

# Replace with your actual access token
ACCESS_TOKEN = 'YOUR_ACCESS_TOKEN'

# Fetch playlists
response = requests.get(
    'https://www.googleapis.com/youtube/v3/playlists?part=snippet&mine=true',
    headers={'Authorization': f'Bearer {ACCESS_TOKEN}'}
)
playlists = response.json()

# Connect to SQLite database
conn = sqlite3.connect('youtube_music.db')
c = conn.cursor()

# Create table for playlists
c.execute('''
    CREATE TABLE IF NOT EXISTS playlists (
        id TEXT PRIMARY KEY,
        title TEXT,
        description TEXT,
        published_at TEXT
    )
''')

# Insert playlists into the database
for item in playlists['items']:
    c.execute('''
        INSERT OR REPLACE INTO playlists (id, title, description, published_at)
        VALUES (?, ?, ?, ?)
    ''', (item['id'], item['snippet']['title'], item['snippet']['description'], item['snippet']['publishedAt']))

# Commit and close the connection
conn.commit()
conn.close()

print("Playlists have been successfully saved to the database.")

Stage 3: Fetching More Data and Analyzing

3.1 Fetch Playlist Items

Update the script to fetch and store playlist items:

# Fetch playlist items
playlist_id = 'YOUR_PLAYLIST_ID'
response = requests.get(
    f'https://www.googleapis.com/youtube/v3/playlistItems?part=snippet&playlistId={playlist_id}',
    headers={'Authorization': f'Bearer {ACCESS_TOKEN}'}
)
playlist_items = response.json()

# Create table for playlist items
c.execute('''
    CREATE TABLE IF NOT EXISTS playlist_items (
        id TEXT PRIMARY KEY,
        playlist_id TEXT,
        title TEXT,
        description TEXT,
        published_at TEXT,
        video_id TEXT
    )
''')

# Insert playlist items into the database
for item in playlist_items['items']:
    c.execute('''
        INSERT OR REPLACE INTO playlist_items (id, playlist_id, title, description, published_at, video_id)
        VALUES (?, ?, ?, ?, ?, ?)
    ''', (item['id'], playlist_id, item['snippet']['title'], item['snippet']['description'], item['snippet']['publishedAt'], item['snippet']['resourceId']['videoId']))

# Commit and close the connection
conn.commit()
conn.close()

print("Playlist items have been successfully saved to the database.")

Stage 4: Analyzing Data

You can now analyze the data using SQL queries directly on the SQLite database or by loading the data into a pandas DataFrame for more complex analysis and visualization.

import sqlite3
import pandas as pd
import matplotlib.pyplot as plt

# Connect to SQLite database
conn = sqlite3.connect('youtube_music.db')

# Load playlists into DataFrame
playlists_df = pd.read_sql_query("SELECT * FROM playlists", conn)
print(playlists_df.head())

# Load playlist items into DataFrame
playlist_items_df = pd.read_sql_query("SELECT * FROM playlist_items", conn)
print(playlist_items_df.head())

# Visualization Example
playlist_items_df['title'].value_counts().plot(kind='bar', figsize=(10, 5))
plt.title('Playlist Items by Title')
plt.xlabel('Title')
plt.ylabel('Count')
plt.show()

# Close the connection
conn.close()

This staged approach will help you connect to the YouTube Data API, fetch playlist data, store it in a SQLite database, and perform data analysis.


YouTube Music Data Analysis

Setup

from ytmusicapi import YTMusic
import pandas as pd
import matplotlib.pyplot as plt

Initialize YTMusic with OAuth credentials

ytmusic = YTMusic('oauth.json')

Fetch Data

Liked Songs

liked_songs = ytmusic.get_liked_songs(limit=100)
liked_songs_df = pd.DataFrame(liked_songs['tracks'])
liked_songs_df['artists'] = liked_songs_df['artists'].apply(lambda x: x[0]['name'] if x else None)
liked_songs_df.head()

Playlists

playlists = ytmusic.get_library_playlists(limit=25)
playlists_df = pd.DataFrame(playlists)
playlists_df.head()

History

history = ytmusic.get_history()
history_df = pd.DataFrame(history)
history_df.head()

Data Visualization

Liked Songs by Artist

liked_songs_df['artists'].value_counts().plot(kind='bar', figsize=(10, 5))
plt.title('Liked Songs by Artist')
plt.xlabel('Artist')
plt.ylabel('Number of Liked Songs')
plt.show()

History by Title

history_df['title'].value_counts().plot(kind='bar', figsize=(10, 5))
plt.title('History by Title')
plt.xlabel('Title')
plt.ylabel('Number of Plays')
plt.show()

Save Data to CSV

liked_songs_df.to_csv('liked_songs.csv', index=False)
playlists_df.to_csv('playlists.csv', index=False)
history_df.to_csv('history.csv', index=False)

### Full Script Breakdown

1. **Setup:**
   - Import necessary libraries (`ytmusicapi`, `pandas`, `matplotlib`).
   - Initialize the YTMusic API with OAuth credentials.

2. **Fetch Data:**
   - Get the user's liked songs and convert them to a DataFrame.
   - Get the user's playlists and convert them to a DataFrame.
   - Get the user's history and convert it to a DataFrame.

3. **Data Visualization:**
   - Visualize the liked songs by artist using a bar chart.
   - Visualize the history by title using a bar chart.

4. **Save Data to CSV:**
   - Save the processed DataFrames to CSV files for further analysis or backup.

### How to Use This Notebook

1. **Ensure you have the `oauth.json` file in your project directory, which contains your OAuth credentials for the YTMusic API.**
2. **Start Jupyter Notebook:**
   ```bash
   jupyter notebook
  1. Create a new notebook or open an existing one and copy the above cells into the notebook.
  2. Run the cells step by step to fetch, analyze, visualize, and save your YouTube Music data.

This setup will provide you with a comprehensive and interactive data analysis report of your YouTube Music telemetry.


Step 1: Set Up Your Python Virtual Environment

First, ensure you have Python installed on your system. I recommend using Python 3.7 or newer. Heres how you can set up a virtual environment:

  1. Create a New Directory for Your Project (Optional):

    mkdir yt-music-project
    cd yt-music-project
    
  2. Create a Virtual Environment:

    python -m venv venv
    
  3. Activate the Virtual Environment:

    • On Windows:
      .\venv\Scripts\activate
      
    • On macOS and Linux:
      source venv/bin/activate
      

Step 2: Install Required Packages

  1. Ensure your requirements.txt includes ytmusicapi: You can create a requirements.txt file containing at least:

    ytmusicapi
    

    If you already have a requirements.txt, make sure ytmusicapi is listed.

  2. Install the Required Packages:

    pip install -r requirements.txt
    

Step 3: Set Up OAuth Authentication

  1. Run OAuth Setup: While in your activated virtual environment and your project directory:

    ytmusicapi oauth
    

    Follow the on-screen instructions:

    • Visit the URL provided in the command output.
    • Log in with your Google account.
    • Authorize the application if prompted.
    • Copy the provided code back into the terminal.

    This will generate an oauth.json file in your project directory containing the necessary credentials.

Step 4: Initialize YTMusic with OAuth Credentials

  1. Create a Python Script: You can create a Python script like main.py to start coding with the API:
    from ytmusicapi import YTMusic
    ytmusic = YTMusic('oauth.json')
    

Step 5: Test by Creating a Playlist

  1. Write Code to Create a Playlist and Search for Music: Add to your main.py:

    # Create a new playlist
    playlist_id = ytmusic.create_playlist("My Awesome Playlist", "A description of my playlist.")
    
    # Search for a song
    search_results = ytmusic.search("Oasis Wonderwall")
    
    # Add the first search result to the new playlist
    if search_results:
        ytmusic.add_playlist_items(playlist_id, [search_results[0]['videoId']])
    
  2. Run Your Script:

    python main.py
    

This setup gives you a complete environment to work with the YTMusic API securely and manage your YouTube music data programmatically. You can extend this setup by adding more features, such as handling errors, enhancing functionality, or integrating with other data sources and tools for analysis or backup.