4.8 KiB
4.8 KiB
Swing Trading Project with EUR/USD Using Oanda and scikit-learn
Step 1: Environment Setup
Install Python
Ensure Python 3.8+ is installed.
Create a Virtual Environment
Navigate to your project directory and run:
python -m venv venv
source venv/bin/activate # Unix/macOS
venv\Scripts\activate # Windows
deactivate
Install Essential Libraries
Create requirements.txt with the following content:
pandas
numpy
matplotlib
seaborn
scikit-learn
jupyterlab
oandapyV20
requests
Install with pip install -r requirements.txt.
Step 2: Project Structure
Organize your directory as follows:
swing_trading_project/
├── data/
├── notebooks/
├── src/
│ ├── __init__.py
│ ├── data_fetcher.py
│ ├── feature_engineering.py
│ ├── model.py
│ └── backtester.py
├── tests/
├── requirements.txt
└── README.md
Step 3: Fetch Historical Data
- Sign up for an Oanda practice account and get an API key.
- Use
oandapyV20indata_fetcher.pyto request historical EUR/USD data. Consider H4 or D granularity. - Save the data to
data/as CSV.
import os
import pandas as pd
from oandapyV20 import API # Import the Oanda API client
import oandapyV20.endpoints.instruments as instruments
# Set your Oanda API credentials and configuration for data fetching
ACCOUNT_ID = 'your_account_id_here'
ACCESS_TOKEN = 'your_access_token_here'
# List of currency pairs to fetch. Add or remove pairs as needed.
CURRENCY_PAIRS = ['EUR_USD', 'USD_JPY', 'GBP_USD', 'AUD_USD', 'USD_CAD']
TIME_FRAME = 'H4' # 4-hour candles, change as per your analysis needs
DATA_DIRECTORY = 'data' # Directory where fetched data will be saved
# Ensure the data directory exists, create it if it doesn't
if not os.path.exists(DATA_DIRECTORY):
os.makedirs(DATA_DIRECTORY)
def fetch_and_save_forex_data(account_id, access_token, currency_pairs, time_frame, data_dir):
"""Fetch historical forex data for specified currency pairs and save it to CSV files."""
# Initialize the Oanda API client with your access token
api_client = API(access_token=access_token)
for pair in currency_pairs:
# Define the parameters for the data request: time frame and number of data points
request_params = {"granularity": time_frame, "count": 5000}
# Prepare the data request for fetching candle data for the current currency pair
data_request = instruments.InstrumentsCandles(instrument=pair, params=request_params)
# Fetch the data
response = api_client.request(data_request)
# Extract the candle data from the response
candle_data = response.get('candles', [])
# If data was fetched, proceed to save it
if candle_data:
# Convert the candle data into a pandas DataFrame
forex_data_df = pd.DataFrame([{
'Time': candle['time'],
'Open': float(candle['mid']['o']),
'High': float(candle['mid']['h']),
'Low': float(candle['mid']['l']),
'Close': float(candle['mid']['c']),
'Volume': candle['volume']
} for candle in candle_data])
# Construct the filename for the CSV file
csv_filename = f"{pair.lower()}_data.csv"
# Save the DataFrame to a CSV file in the specified data directory
forex_data_df.to_csv(os.path.join(data_dir, csv_filename), index=False)
print(f"Data for {pair} saved to {csv_filename}")
def main():
"""Orchestrates the data fetching and saving process."""
print("Starting data fetching process...")
# Call the function to fetch and save data for the configured currency pairs
fetch_and_save_forex_data(ACCOUNT_ID, ACCESS_TOKEN, CURRENCY_PAIRS, TIME_FRAME, DATA_DIRECTORY)
print("Data fetching process completed.")
if __name__ == '__main__':
# Execute the script
main()
Step 4: Exploratory Data Analysis
- Create a new Jupyter notebook in
notebooks/. - Load the CSV with
pandasand perform initial exploration. Plot closing prices and moving averages.
Step 5: Basic Feature Engineering
- In the notebook, add technical indicators as features (e.g., SMA 50, SMA 200, RSI) using
pandas. - Investigate the relationship between these features and price movements.
Step 6: Initial Model Training
- In
model.py, fit a simplescikit-learnmodel (e.g., LinearRegression, LogisticRegression) to predict price movements. - Split data into training and testing sets to evaluate the model's performance.
Step 7: Documentation
- Document your project's setup, objectives, and findings in
README.md.
Next Steps
- Refine features, try different models, and develop a backtesting framework as you progress.