543 lines
14 KiB
Markdown
543 lines
14 KiB
Markdown
# WMR Fix Trading: Professional Implementation Guide
|
|
## Complete System Framework & Operation Manual
|
|
|
|
### 0. Document Control
|
|
|
|
```
|
|
Version: 2.0
|
|
Last Updated: 2024-10-26
|
|
Status: Production Ready
|
|
Review Cycle: Bi-weekly
|
|
```
|
|
|
|
### I. Strategy Foundation
|
|
|
|
1. Core Strategy Elements
|
|
```
|
|
Trading Focus:
|
|
├── Instrument: Major FX Pairs
|
|
├── Primary: EUR/USD, GBP/USD
|
|
├── Secondary: USD/JPY
|
|
└── Conditional: EUR/GBP
|
|
|
|
Time Windows:
|
|
├── Preparation: 11:30-11:53 ET
|
|
├── Entry Window: 11:54-12:00 ET
|
|
├── Management: 12:00-12:07 ET
|
|
└── Analysis: 12:07-12:30 ET
|
|
|
|
Edge Definition:
|
|
├── Institutional Flow Patterns
|
|
├── Predictable Volume Spikes
|
|
├── Order Flow Imbalances
|
|
└── Price Action Continuation
|
|
```
|
|
|
|
2. Required Infrastructure
|
|
```
|
|
Hardware Requirements:
|
|
├── Processing: Multi-Core CPU (i7/Ryzen 7 minimum)
|
|
├── Memory: 32GB RAM recommended
|
|
├── Storage: NVMe SSD
|
|
├── Network: Dual ISP with auto-failover
|
|
└── Power: UPS backup system
|
|
|
|
Software Stack:
|
|
├── NinjaTrader 8 (latest version)
|
|
├── Time sync service
|
|
├── Network monitoring
|
|
├── Backup execution system
|
|
└── Performance tracking suite
|
|
```
|
|
|
|
### II. Pre-Trading Setup
|
|
|
|
1. Daily System Preparation
|
|
```
|
|
System Checklist (11:30 ET):
|
|
├── NinjaTrader Connection Status
|
|
│ ├── Data feed verification
|
|
│ ├── Order routing test
|
|
│ └── Time synchronization check
|
|
│
|
|
├── Market Conditions
|
|
│ ├── News impact assessment
|
|
│ ├── Volatility measurement
|
|
│ └── Spread baseline check
|
|
│
|
|
├── Risk Parameters
|
|
│ ├── Position size calculation
|
|
│ ├── Stop level determination
|
|
│ └── Target level setting
|
|
│
|
|
└── Execution Templates
|
|
├── Entry orders setup
|
|
├── Exit orders preparation
|
|
└── Emergency procedures review
|
|
```
|
|
|
|
2. Market Analysis Framework
|
|
```python
|
|
class PreFixAnalysis:
|
|
def analyze_conditions(self):
|
|
return {
|
|
'volume_profile': {
|
|
'current_volume': self.get_current_volume(),
|
|
'average_volume': self.calculate_avg_volume(),
|
|
'threshold': 1.5 # Volume must be >1.5x average
|
|
},
|
|
'flow_analysis': {
|
|
'institutional_activity': self.detect_large_orders(),
|
|
'order_imbalance': self.calculate_imbalance(),
|
|
'threshold': 2.0 # Order imbalance significance
|
|
},
|
|
'technical_setup': {
|
|
'trend_direction': self.determine_trend(),
|
|
'key_levels': self.identify_levels(),
|
|
'momentum': self.calculate_momentum()
|
|
}
|
|
}
|
|
```
|
|
|
|
### III. Trading Execution Framework
|
|
|
|
1. Entry Strategy Implementation
|
|
```csharp
|
|
public class FixEntryManager
|
|
{
|
|
private readonly struct EntryPhase
|
|
{
|
|
public DateTime Time { get; }
|
|
public double SizePercent { get; }
|
|
public double AllowedSlippage { get; }
|
|
public int RetryAttempts { get; }
|
|
}
|
|
|
|
private readonly EntryPhase[] entryPhases = new[]
|
|
{
|
|
new EntryPhase
|
|
{
|
|
Time = DateTime.Parse("11:54:00"),
|
|
SizePercent = 0.4,
|
|
AllowedSlippage = 0.5,
|
|
RetryAttempts = 2
|
|
},
|
|
new EntryPhase
|
|
{
|
|
Time = DateTime.Parse("11:56:00"),
|
|
SizePercent = 0.3,
|
|
AllowedSlippage = 0.7,
|
|
RetryAttempts = 2
|
|
},
|
|
new EntryPhase
|
|
{
|
|
Time = DateTime.Parse("11:58:00"),
|
|
SizePercent = 0.3,
|
|
AllowedSlippage = 1.0,
|
|
RetryAttempts = 1
|
|
}
|
|
};
|
|
}
|
|
```
|
|
|
|
2. Position Management
|
|
```csharp
|
|
public class PositionManager
|
|
{
|
|
private readonly struct ExitLevel
|
|
{
|
|
public double Percentage { get; }
|
|
public double Target { get; }
|
|
public DateTime MaxTime { get; }
|
|
}
|
|
|
|
private readonly ExitLevel[] exitLevels = new[]
|
|
{
|
|
new ExitLevel
|
|
{
|
|
Percentage = 0.4,
|
|
Target = 12, // pips
|
|
MaxTime = DateTime.Parse("12:02:30")
|
|
},
|
|
new ExitLevel
|
|
{
|
|
Percentage = 0.3,
|
|
Target = 20,
|
|
MaxTime = DateTime.Parse("12:04:00")
|
|
},
|
|
new ExitLevel
|
|
{
|
|
Percentage = 0.3,
|
|
Target = 30,
|
|
MaxTime = DateTime.Parse("12:06:30")
|
|
}
|
|
};
|
|
}
|
|
```
|
|
|
|
### IV. Risk Management Framework
|
|
|
|
1. Pre-Trade Risk Controls
|
|
```csharp
|
|
public class RiskManager
|
|
{
|
|
private struct RiskParameters
|
|
{
|
|
public double MaxAccountRisk = 0.02;
|
|
public double MaxDailyDrawdown = 0.04;
|
|
public double MaxPositionSize = 0.1;
|
|
public int MaxConcurrentPairs = 2;
|
|
public double MinRewardRatio = 1.5;
|
|
}
|
|
|
|
private bool ValidateTradeRisk(TradeSetup setup)
|
|
{
|
|
return setup.AccountRisk <= RiskParameters.MaxAccountRisk &&
|
|
setup.PositionSize <= RiskParameters.MaxPositionSize &&
|
|
setup.RewardRatio >= RiskParameters.MinRewardRatio;
|
|
}
|
|
}
|
|
```
|
|
|
|
2. Active Risk Management
|
|
```python
|
|
class ActiveRiskManager:
|
|
def manage_position_risk(self):
|
|
return {
|
|
'stop_management': {
|
|
'initial_stop': -12,
|
|
'breakeven': +8,
|
|
'trailing_stop': self.calculate_trailing_stop(),
|
|
'time_based_stop': self.time_stop_level()
|
|
},
|
|
'position_scaling': {
|
|
'first_scale': self.manage_first_scale(),
|
|
'second_scale': self.manage_second_scale(),
|
|
'final_exit': self.manage_final_exit()
|
|
},
|
|
'emergency_procedures': {
|
|
'spread_violation': self.check_spread_limits(),
|
|
'slippage_control': self.monitor_slippage(),
|
|
'technical_issues': self.system_health_check()
|
|
}
|
|
}
|
|
```
|
|
|
|
### V. Performance Monitoring
|
|
|
|
1. Real-Time Monitoring
|
|
```python
|
|
class PerformanceMonitor:
|
|
def track_execution(self):
|
|
metrics = {
|
|
'execution_quality': {
|
|
'fill_price': self.analyze_fills(),
|
|
'slippage': self.measure_slippage(),
|
|
'timing_accuracy': self.check_timing()
|
|
},
|
|
'position_tracking': {
|
|
'current_risk': self.calculate_risk(),
|
|
'profit_loss': self.track_pnl(),
|
|
'expected_vs_actual': self.compare_performance()
|
|
},
|
|
'system_health': {
|
|
'latency': self.measure_latency(),
|
|
'api_performance': self.check_api_status(),
|
|
'error_rate': self.track_errors()
|
|
}
|
|
}
|
|
return self.analyze_metrics(metrics)
|
|
```
|
|
|
|
2. Post-Trade Analysis
|
|
```python
|
|
class TradeAnalyzer:
|
|
def analyze_performance(self):
|
|
return {
|
|
'trade_metrics': {
|
|
'entry_efficiency': self.analyze_entries(),
|
|
'exit_efficiency': self.analyze_exits(),
|
|
'risk_reward_achieved': self.calculate_rr(),
|
|
'expectancy': self.calculate_expectancy()
|
|
},
|
|
'pattern_analysis': {
|
|
'setup_quality': self.evaluate_setup(),
|
|
'execution_quality': self.evaluate_execution(),
|
|
'management_quality': self.evaluate_management()
|
|
},
|
|
'improvement_areas': {
|
|
'entry_timing': self.identify_entry_improvements(),
|
|
'exit_efficiency': self.identify_exit_improvements(),
|
|
'risk_management': self.identify_risk_improvements()
|
|
}
|
|
}
|
|
```
|
|
|
|
### VI. Continuous Improvement
|
|
|
|
1. Weekly Review Process
|
|
```
|
|
Performance Review:
|
|
├── Trade Journal Analysis
|
|
├── Execution Quality Review
|
|
├── Risk Management Assessment
|
|
└── System Performance Evaluation
|
|
|
|
Improvement Areas:
|
|
├── Entry Timing Optimization
|
|
├── Exit Efficiency Enhancement
|
|
├── Risk Control Refinement
|
|
└── System Reliability Upgrade
|
|
```
|
|
|
|
2. Monthly Optimization
|
|
```
|
|
Strategy Refinement:
|
|
├── Pattern Recognition Update
|
|
├── Risk Parameter Adjustment
|
|
├── Execution Logic Optimization
|
|
└── Performance Metric Review
|
|
|
|
System Enhancement:
|
|
├── Technology Stack Update
|
|
├── Connection Optimization
|
|
├── Error Rate Reduction
|
|
└── Latency Minimization
|
|
```
|
|
|
|
Remember:
|
|
1. Edge preservation is paramount
|
|
2. System reliability enables edge exploitation
|
|
3. Risk management ensures longevity
|
|
4. Continuous improvement maintains edge
|
|
5. Documentation supports consistency
|
|
|
|
Would you like me to:
|
|
1. Add specific code implementations?
|
|
2. Develop detailed testing procedures?
|
|
3. Create comprehensive checklists?
|
|
4. Build additional monitoring tools?
|
|
|
|
# WMR Fix Trade Example: EUR/USD
|
|
## Complete Trade Walkthrough with Real-Time Decision Making
|
|
|
|
### I. Pre-Trade Analysis (11:30-11:53 ET)
|
|
|
|
1. Market Context
|
|
```
|
|
Date: October 26, 2024
|
|
Pair: EUR/USD
|
|
Current Price: 1.0650
|
|
Daily Range: 1.0625-1.0675
|
|
Average Spread: 0.5 pips
|
|
Current Volatility: Medium
|
|
|
|
Account Status:
|
|
├── Balance: $100,000
|
|
├── Daily P&L: +$1,200
|
|
├── Risk Per Trade: $2,000 (2%)
|
|
└── Available Pairs: EUR/USD, GBP/USD
|
|
```
|
|
|
|
2. Initial Analysis (11:45 ET)
|
|
```
|
|
Volume Profile:
|
|
├── Current Volume: 125% of normal
|
|
├── Large Orders: Detected at 1.0640
|
|
├── Order Flow: Buy-side imbalance
|
|
└── Institutional Activity: Increasing
|
|
|
|
Technical Setup:
|
|
├── Trend: Bullish intraday
|
|
├── Key Levels:
|
|
│ ├── Support: 1.0640
|
|
│ └── Resistance: 1.0665
|
|
├── Momentum: Positive
|
|
└── Order Book: Buy-side heavy
|
|
```
|
|
|
|
### II. Trade Setup (11:50-11:53 ET)
|
|
|
|
1. Position Sizing Calculation
|
|
```
|
|
Risk Parameters:
|
|
├── Account Risk: $2,000 (2%)
|
|
├── Stop Loss: 12 pips (1.0638)
|
|
├── Position Value Per Pip: $10
|
|
└── Maximum Position: 16.6 lots
|
|
|
|
Position Plan:
|
|
├── Total Size: 12 lots
|
|
│ ├── Entry 1: 5 lots (40%)
|
|
│ ├── Entry 2: 4 lots (33%)
|
|
│ └── Entry 3: 3 lots (27%)
|
|
```
|
|
|
|
2. Entry Plan
|
|
```
|
|
Target Entry Levels:
|
|
├── Entry 1: 1.0650 ±1 pip (11:54:00)
|
|
├── Entry 2: 1.0652 ±1 pip (11:56:00)
|
|
└── Entry 3: 1.0654 ±1 pip (11:58:00)
|
|
|
|
Profit Targets:
|
|
├── Target 1: 1.0662 (12 pips)
|
|
├── Target 2: 1.0670 (20 pips)
|
|
└── Target 3: 1.0680 (30 pips)
|
|
```
|
|
|
|
### III. Trade Execution
|
|
|
|
1. First Entry (11:54:00 ET)
|
|
```
|
|
Market Conditions:
|
|
├── Price: 1.0650
|
|
├── Spread: 0.6 pips
|
|
├── Volume: Surge detected
|
|
└── Flow: Strong buy imbalance
|
|
|
|
Execution:
|
|
├── Order Type: Market
|
|
├── Size: 5 lots
|
|
├── Fill Price: 1.0651
|
|
├── Slippage: 0.1 pips
|
|
└── Initial Stop: 1.0639
|
|
```
|
|
|
|
2. Second Entry (11:56:00 ET)
|
|
```
|
|
Updated Conditions:
|
|
├── Price moved to: 1.0654
|
|
├── Volume: 150% of normal
|
|
├── Pattern: Confirming bullish
|
|
└── Flow: Maintained buy bias
|
|
|
|
Execution:
|
|
├── Order Type: Market
|
|
├── Size: 4 lots
|
|
├── Fill Price: 1.0654
|
|
├── Slippage: 0.0 pips
|
|
└── Average Entry: 1.0652
|
|
```
|
|
|
|
3. Final Entry (11:58:00 ET)
|
|
```
|
|
Market Status:
|
|
├── Price: 1.0657
|
|
├── Volume: 175% of normal
|
|
├── Pattern: Strong continuation
|
|
└── Risk: Within parameters
|
|
|
|
Execution:
|
|
├── Order Type: Market
|
|
├── Size: 3 lots
|
|
├── Fill Price: 1.0657
|
|
├── Slippage: 0.2 pips
|
|
└── Final Average Entry: 1.0654
|
|
```
|
|
|
|
### IV. Position Management
|
|
|
|
1. Initial Management (12:00-12:02 ET)
|
|
```
|
|
Position Status:
|
|
├── Total Size: 12 lots
|
|
├── Average Entry: 1.0654
|
|
├── Current Price: 1.0663
|
|
├── Unrealized P&L: +$1,080
|
|
└── Risk Status: Reduced to breakeven
|
|
|
|
Stop Adjustment:
|
|
├── Initial: 1.0639
|
|
├── Moved to: 1.0654 (breakeven)
|
|
└── Reason: Price exceeded +8 pips
|
|
```
|
|
|
|
2. First Scale Out (12:02:30 ET)
|
|
```
|
|
Market Conditions:
|
|
├── Price: 1.0666
|
|
├── Volume: Maintaining
|
|
├── Flow: Still bullish
|
|
└── Target 1: Reached
|
|
|
|
Execution:
|
|
├── Size: 5 lots (40%)
|
|
├── Exit Price: 1.0666
|
|
├── P&L: +$600
|
|
└── Remaining: 7 lots
|
|
```
|
|
|
|
3. Second Scale Out (12:04:15 ET)
|
|
```
|
|
Position Update:
|
|
├── Price: 1.0672
|
|
├── Market: Strong momentum
|
|
├── Target 2: Reached
|
|
└── Risk: Locked in profit
|
|
|
|
Execution:
|
|
├── Size: 4 lots (33%)
|
|
├── Exit Price: 1.0672
|
|
├── P&L: +$720
|
|
└── Remaining: 3 lots
|
|
```
|
|
|
|
4. Final Exit (12:06:45 ET)
|
|
```
|
|
Final Conditions:
|
|
├── Price: 1.0675
|
|
├── Time: Approaching fix end
|
|
├── Flow: Starting to slow
|
|
└── Decision: Time-based exit
|
|
|
|
Execution:
|
|
├── Size: 3 lots (remaining)
|
|
├── Exit Price: 1.0675
|
|
├── Final P&L: +$630
|
|
└── Total Trade P&L: +$1,950
|
|
```
|
|
|
|
### V. Trade Summary
|
|
|
|
1. Performance Metrics
|
|
```
|
|
Entry Efficiency:
|
|
├── Average Fill Quality: 98%
|
|
├── Slippage Cost: $30
|
|
├── Spread Cost: $72
|
|
└── Timing Accuracy: 92%
|
|
|
|
Exit Efficiency:
|
|
├── Scale Out Accuracy: 95%
|
|
├── Target Achievement: 2/3
|
|
├── Time Management: Optimal
|
|
└── Overall Execution: Strong
|
|
|
|
P&L Breakdown:
|
|
├── Gross Profit: $1,950
|
|
├── Transaction Costs: $102
|
|
├── Net Profit: $1,848
|
|
└── R/R Achieved: 1.85
|
|
```
|
|
|
|
2. Learning Points
|
|
```
|
|
Strengths:
|
|
├── Entry timing accuracy
|
|
├── Scale-out execution
|
|
├── Risk management
|
|
└── Pattern recognition
|
|
|
|
Improvements:
|
|
├── First entry could be more aggressive
|
|
├── Second scale timing could be better
|
|
├── Final exit could wait longer
|
|
└── Stop adjustment could be tighter
|
|
```
|
|
|
|
Would you like me to:
|
|
1. Add more detail to any phase?
|
|
2. Create alternative scenario analyses?
|
|
3. Develop specific execution improvements?
|
|
4. Build a template for future trades? |